2012
Pooled Short Hairpin (shRNA) Library Screen Coupled with Next-Generation Sequencing Efficiently Uncover Transcriptional Network in Neural Lineage Development of Human Embryonic Stem Cells (IN8-1.009)
Szekely A, Zhang Y, Reed B, Schulz V, Wang Z, Euskirchen G, Snyder M, Ivanova N, Weissman S. Pooled Short Hairpin (shRNA) Library Screen Coupled with Next-Generation Sequencing Efficiently Uncover Transcriptional Network in Neural Lineage Development of Human Embryonic Stem Cells (IN8-1.009). Neurology 2012, 78: in8-1.009-in8-1.009. DOI: 10.1212/wnl.78.1_meetingabstracts.in8-1.009.Peer-Reviewed Original ResearchPooled Short Hairpin (shRNA) Library Screen Coupled with Next-Generation Sequencing Efficiently Uncover Transcriptional Network in Neural Lineage Development of Human Embryonic Stem Cells (P02.016)
Szekely A, Zhang Y, Reed B, Schulz V, Wang Z, Euskirchen G, Snyder M, Ivanova N, Weissman S. Pooled Short Hairpin (shRNA) Library Screen Coupled with Next-Generation Sequencing Efficiently Uncover Transcriptional Network in Neural Lineage Development of Human Embryonic Stem Cells (P02.016). Neurology 2012, 78: p02.016-p02.016. DOI: 10.1212/wnl.78.1_meetingabstracts.p02.016.Peer-Reviewed Original Research
1996
Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells
Schulz V, Zakian V, Ogburn C, McKay J, Jarzebowicz A, Martin G, Edland S. Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells. Human Genetics 1996, 97: 750-754. PMID: 8641691, DOI: 10.1007/bf02346184.Peer-Reviewed Original ResearchConceptsTRF lengthMean TRF lengthWerner syndromeDiabetes mellitusControl subjectsWS cellsReplicative declineSubset of cellsOcular cataractsGeriatric disordersPremature onsetMean lengthSenescent controlsReplicative capacitySenescent cellsEarly passagesAccelerated lossAccelerated rateChromosomal translocationsNormal somatic cellsWerner syndrome cellsReplicative potentialCellsCell cycle
1994
The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation
Schulz V, Zakian V. The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 1994, 76: 145-155. PMID: 8287473, DOI: 10.1016/0092-8674(94)90179-1.Peer-Reviewed Original ResearchConceptsSubtelomeric genesDNA helicaseDe novoPif1 DNA helicaseYeast mutantsPif1 helicaseNew telomeresPif1 mutantsTelomere elongationTelomeric DNASubtelomeric regionsLittle homologyLoss of expressionChromosome breakageHelicaseGenesPIF1MutantsTelomeresNovoMutationsElevated frequencyExpressionCellsChromosomes