2023
Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration
Austin-Zimmerman I, Levey D, Giannakopoulou O, Deak J, Galimberti M, Adhikari K, Zhou H, Denaxas S, Irizar H, Kuchenbaecker K, McQuillin A, Concato J, Buysse D, Gaziano J, Gottlieb D, Polimanti R, Stein M, Bramon E, Gelernter J. Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration. Nature Communications 2023, 14: 6059. PMID: 37770476, PMCID: PMC10539313, DOI: 10.1038/s41467-023-41249-y.Peer-Reviewed Original ResearchConceptsAssociation studiesGenome-wide association studiesGenetic correlationsWide association studyLinkage disequilibrium scorePositive genetic correlationSleep traitsIndependent lociMillion Veteran ProgramTraitsAncestryUK BiobankVeteran ProgramMendelian randomisationLociHeritabilitySNPsPhenotypeEast AsiansSimilar patternCardiometabolic phenotypes
2021
Ancestry may confound genetic machine learning: Candidate-gene prediction of opioid use disorder as an example
Hatoum AS, Wendt FR, Galimberti M, Polimanti R, Neale B, Kranzler HR, Gelernter J, Edenberg HJ, Agrawal A. Ancestry may confound genetic machine learning: Candidate-gene prediction of opioid use disorder as an example. Drug And Alcohol Dependence 2021, 229: 109115. PMID: 34710714, PMCID: PMC9358969, DOI: 10.1016/j.drugalcdep.2021.109115.Peer-Reviewed Original ResearchConceptsGenome-wide significant variantsCandidate gene predictionGenetic predictionRandom SNPsPolygenic traitRandom phenotypeCandidate SNPsSimulated phenotypesPsychiatric geneticsGenetic machineSignificant variantsBinary phenotypesCandidate variantsSNPsAncestryPhenotypeAllele frequenciesVariantsMachine learning modelsGenetic testsLearning model
2019
International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci
Nievergelt CM, Maihofer AX, Klengel T, Atkinson EG, Chen CY, Choi KW, Coleman JRI, Dalvie S, Duncan LE, Gelernter J, Levey DF, Logue MW, Polimanti R, Provost AC, Ratanatharathorn A, Stein MB, Torres K, Aiello AE, Almli LM, Amstadter AB, Andersen SB, Andreassen OA, Arbisi PA, Ashley-Koch AE, Austin SB, Avdibegovic E, Babić D, Bækvad-Hansen M, Baker DG, Beckham JC, Bierut LJ, Bisson JI, Boks MP, Bolger EA, Børglum AD, Bradley B, Brashear M, Breen G, Bryant RA, Bustamante AC, Bybjerg-Grauholm J, Calabrese JR, Caldas- de- Almeida J, Dale AM, Daly MJ, Daskalakis NP, Deckert J, Delahanty DL, Dennis MF, Disner SG, Domschke K, Dzubur-Kulenovic A, Erbes CR, Evans A, Farrer LA, Feeny NC, Flory JD, Forbes D, Franz CE, Galea S, Garrett ME, Gelaye B, Geuze E, Gillespie C, Uka AG, Gordon SD, Guffanti G, Hammamieh R, Harnal S, Hauser MA, Heath AC, Hemmings SMJ, Hougaard DM, Jakovljevic M, Jett M, Johnson EO, Jones I, Jovanovic T, Qin XJ, Junglen AG, Karstoft KI, Kaufman ML, Kessler RC, Khan A, Kimbrel NA, King AP, Koen N, Kranzler HR, Kremen WS, Lawford BR, Lebois LAM, Lewis CE, Linnstaedt SD, Lori A, Lugonja B, Luykx JJ, Lyons MJ, Maples-Keller J, Marmar C, Martin AR, Martin NG, Maurer D, Mavissakalian MR, McFarlane A, McGlinchey RE, McLaughlin KA, McLean SA, McLeay S, Mehta D, Milberg WP, Miller MW, Morey RA, Morris CP, Mors O, Mortensen PB, Neale BM, Nelson EC, Nordentoft M, Norman SB, O’Donnell M, Orcutt HK, Panizzon MS, Peters ES, Peterson AL, Peverill M, Pietrzak RH, Polusny MA, Rice JP, Ripke S, Risbrough VB, Roberts AL, Rothbaum AO, Rothbaum BO, Roy-Byrne P, Ruggiero K, Rung A, Rutten BPF, Saccone NL, Sanchez SE, Schijven D, Seedat S, Seligowski AV, Seng JS, Sheerin CM, Silove D, Smith AK, Smoller JW, Sponheim SR, Stein DJ, Stevens JS, Sumner JA, Teicher MH, Thompson WK, Trapido E, Uddin M, Ursano RJ, van den Heuvel LL, Van Hooff M, Vermetten E, Vinkers CH, Voisey J, Wang Y, Wang Z, Werge T, Williams MA, Williamson DE, Winternitz S, Wolf C, Wolf EJ, Wolff JD, Yehuda R, Young RM, Young KA, Zhao H, Zoellner LA, Liberzon I, Ressler KJ, Haas M, Koenen KC. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nature Communications 2019, 10: 4558. PMID: 31594949, PMCID: PMC6783435, DOI: 10.1038/s41467-019-12576-w.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesDisease genesAssociation studiesGenome-wide significant lociAfrican-ancestry analysesNon-coding RNAsGenetic risk lociParkinson's disease genesEuropean ancestry populationsNovel genesSignificant lociGenetic variationSpecific lociRisk lociAdditional lociLociAncestry populationsCommon variantsHeritability estimatesGenesGWASRNABiologySNPsPARK2
2011
HapMap-based study of human soluble glutathione S-transferase enzymes
Polimanti R, Piacentini S, Fuciarelli M. HapMap-based study of human soluble glutathione S-transferase enzymes. Pharmacogenetics And Genomics 2011, 21: 665-672. PMID: 21799460, DOI: 10.1097/fpc.0b013e328349da4d.Peer-Reviewed Original ResearchConceptsNatural selectionGST genesGenetic variabilityGlutathione S-transferase enzymesSingle nucleotide polymorphism (SNP) diversityHuman genome regionsHuman demographic historyHuman genetic variabilityGST SNPsInternational HapMap ProjectSingle nucleotide substitutionChromosomal clustersDemographic historyGenome regionsGenome scanCellular detoxificationCandidate genesHapMap projectNucleotide substitutionsGenesHapMap dataComplex diseasesPopulation differencesF-statisticsSNPs