2024
Interplay of Nav1.8 and Nav1.7 channels drives neuronal hyperexcitability in neuropathic pain
Vasylyev D, Zhao P, Schulman B, Waxman S. Interplay of Nav1.8 and Nav1.7 channels drives neuronal hyperexcitability in neuropathic pain. The Journal Of General Physiology 2024, 156: e202413596. PMID: 39378238, PMCID: PMC11465073, DOI: 10.1085/jgp.202413596.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsGanglia, SpinalHumansMiceNAV1.7 Voltage-Gated Sodium ChannelNAV1.8 Voltage-Gated Sodium ChannelNeuralgiaNeuronsRatsConceptsDorsal root ganglionGain-of-function Nav1.7 mutationsDorsal root ganglion neuronsSodium channel Nav1.7Inherited erythromelalgiaNav1.7 mutationsNeuropathic painNeuronal hyperexcitabilityOpen-probabilityVoltage-gated sodium channel Nav1.7Hyperexcitability of DRG neuronsModel of neuropathic painSubthreshold membrane potential oscillationsResting membrane potentialMembrane potential oscillationsReduced firing probabilityIncreased rheobaseNav1.8 channelsDRG neuronsHuman genetic modelsNav1.8Root ganglionNav1.7 channelsNav1.7AP generation
2021
Contributions of NaV1.8 and NaV1.9 to excitability in human induced pluripotent stem-cell derived somatosensory neurons
Alsaloum M, Labau JIR, Liu S, Estacion M, Zhao P, Dib-Hajj F, Waxman SG. Contributions of NaV1.8 and NaV1.9 to excitability in human induced pluripotent stem-cell derived somatosensory neurons. Scientific Reports 2021, 11: 24283. PMID: 34930944, PMCID: PMC8688473, DOI: 10.1038/s41598-021-03608-x.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAutopsyCell DifferentiationElectrophysiologyHumansImmunohistochemistryInduced Pluripotent Stem CellsMembrane PotentialsMutationNAV1.8 Voltage-Gated Sodium ChannelNAV1.9 Voltage-Gated Sodium ChannelNeuronsNeurosciencesPainPatch-Clamp TechniquesProtein IsoformsSensory Receptor CellsSomatosensory CortexConceptsNeuronal excitabilitySomatosensory neuronsPluripotent stem cell-derived sensory neuronsDynamic clamp electrophysiologyTreatment of painPromising novel modalityVoltage-gated sodium channelsSodium channel isoformsNeuronal membrane potentialGenetic knockout modelsNav1.9 currentsPharmacologic blockSensory neuronsNav1.8Cellular correlatesRepetitive firingClamp electrophysiologyExcitabilityNeuronal backgroundNovel modalityChannel isoformsSodium channelsNeuronsNav1.9Knockout models
2013
Small-Fiber Neuropathy Nav1.8 Mutation Shifts Activation to Hyperpolarized Potentials and Increases Excitability of Dorsal Root Ganglion Neurons
Huang J, Yang Y, Zhao P, Gerrits MM, Hoeijmakers JG, Bekelaar K, Merkies IS, Faber CG, Dib-Hajj SD, Waxman SG. Small-Fiber Neuropathy Nav1.8 Mutation Shifts Activation to Hyperpolarized Potentials and Increases Excitability of Dorsal Root Ganglion Neurons. Journal Of Neuroscience 2013, 33: 14087-14097. PMID: 23986244, PMCID: PMC6618513, DOI: 10.1523/jneurosci.2710-13.2013.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAmino Acid SequenceAnimalsCells, CulturedGanglia, SpinalHumansIon Channel GatingMaleMembrane PotentialsMiceMice, TransgenicMiddle AgedMolecular Sequence DataMutation, MissenseNAV1.8 Voltage-Gated Sodium ChannelNeuronsPeripheral Nervous System DiseasesRatsRats, Sprague-DawleyConceptsDorsal root ganglion neuronsSmall DRG neuronsDRG neuronsGanglion neuronsAction potentialsIdiopathic small fiber neuropathySmall-diameter DRG neuronsWhole-cell voltage-clamp recordingsSmall-caliber nerve fibersVoltage-gated sodium channel Nav1.7Peripheral sensory neuronsCurrent-clamp studiesLimited treatment optionsSmall fiber neuropathySodium channel Nav1.8Voltage-clamp recordingsSodium channel Nav1.7Autonomic dysfunctionIncreases excitabilityTreatment optionsUnknown etiologyFunctional variantsNerve fibersSensory neuronsRamp depolarization