2023
Integrating Right Ventricular Pressure Waveform Analysis With Two-Point Volume Measurement for Quantification of Systolic and Diastolic Function: Experimental Validation and Clinical Application
Heerdt P, Martin-Flores M, Oakland H, Joseph P, Singh I. Integrating Right Ventricular Pressure Waveform Analysis With Two-Point Volume Measurement for Quantification of Systolic and Diastolic Function: Experimental Validation and Clinical Application. Journal Of Cardiothoracic And Vascular Anesthesia 2023, 37: 1929-1937. PMID: 37422337, PMCID: PMC10529383, DOI: 10.1053/j.jvca.2023.06.011.Peer-Reviewed Original ResearchConceptsRight heart catheterizationHeart catheterizationDiastolic functionRV volumesBeat measuresDiagnostic right heart catheterizationReference standardRight ventricular contractilityEnd-diastolic pressurePressure waveform analysisEnd-systolic elastancePotential clinical utilityClinical applicationRV volume measurementsVolume measurementsRV contractilityRV systolicVentricular contractilityRV pressureBland-Altman analysisClinical utilityAnesthetized swineNitric oxideExperimental modelContractility
2017
Agreement of Bioreactance Cardiac Output Monitoring With Thermodilution During Hemorrhagic Shock and Resuscitation in Adult Swine
Berlin DA, Peprah-Mensah H, Manoach S, Heerdt PM. Agreement of Bioreactance Cardiac Output Monitoring With Thermodilution During Hemorrhagic Shock and Resuscitation in Adult Swine. Critical Care Medicine 2017, 45: e195-e201. PMID: 27749345, DOI: 10.1097/ccm.0000000000002071.Peer-Reviewed Original ResearchConceptsNoninvasive cardiac output monitoringCardiac output monitoringThermodilution cardiac outputCardiac outputOutput monitoringArtery catheterHemorrhagic shockBolus thermodilutionIntermittent bolus thermodilutionFemoral artery catheterPulmonary artery catheterAdult porcine modelBlood pressure measurementsLaboratory animal investigationFour-quadrant plotLimits of agreementShed bloodBland-Altman analysisAnimal investigationsPlasma lactateThermodilution measurementsResuscitationYorkshire swineAdult swinePorcine model
2014
Regulation of Protein Phosphatase 1I by Cdc25C-associated Kinase 1 (C-TAK1) and PFTAIRE Protein Kinase*
Platholi J, Federman A, Detert JA, Heerdt P, Hemmings HC. Regulation of Protein Phosphatase 1I by Cdc25C-associated Kinase 1 (C-TAK1) and PFTAIRE Protein Kinase*. Journal Of Biological Chemistry 2014, 289: 23893-23900. PMID: 25028520, PMCID: PMC4156073, DOI: 10.1074/jbc.m114.557744.Peer-Reviewed Original ResearchConceptsProtein phosphatase 1IC-TAK1Protein kinaseKinase 1GSK-3Protein phosphatase 1Phosphatase activityPP-1cThr-72Multisite phosphorylationActivating residuesPhosphatase 1Regulatory subunitSer-86Ser-71Subsequent phosphorylationMajor endogenous formsInhibitor 2PhosphorylationKinaseCdc25CEndogenous formPFTK1ResiduesActivation
2013
NHE Isoform Switching and KChIP2 Upregulation in Aging Porcine Atria
Kant R, Hu Z, Malhotra JK, Krogh-Madsen T, Christini DJ, Heerdt PM, Abbott GW. NHE Isoform Switching and KChIP2 Upregulation in Aging Porcine Atria. PLOS ONE 2013, 8: e82951. PMID: 24376615, PMCID: PMC3871617, DOI: 10.1371/journal.pone.0082951.Peer-Reviewed Original ResearchConceptsAtrial fibrillationMyocyte action potential durationHuman cardiac physiologyCessation of stimulationAction potential durationLarge animal modelSodium-hydrogen exchangerReperfusion arrhythmiasNHE1-specific inhibitorMyocardial responsivenessPharmacological responsivenessPharmacologic efficacyYoung adult pigsAtrial tissuePotential durationTherapeutic targetAnimal modelsCardiac pathologyKChIP2 expressionReal-time qPCRPotential molecular basisTherapeutic agentsCardiac physiologyFemale swineYoung adults
2012
Transcriptomic analysis reveals atrial KCNE1 down‐regulation following lung lobectomy
Heerdt PM, Kant R, Hu Z, Kanda VA, Christini DJ, Malhotra JK, Abbott GW. Transcriptomic analysis reveals atrial KCNE1 down‐regulation following lung lobectomy. Journal Of Molecular And Cellular Cardiology 2012, 53: 350-353. PMID: 22641150, PMCID: PMC3418454, DOI: 10.1016/j.yjmcc.2012.05.010.Peer-Reviewed Original ResearchConceptsEffective refractory periodLone atrial fibrillationAtrial fibrillationPostoperative AFLung lobectomyLeft atriumNew-onset postoperative atrial fibrillationMean pulmonary artery pressurePostoperative atrial fibrillationPulmonary vascular resistanceUpper lung lobectomyPulmonary artery pressureTelemetric ECGArtery pressureVascular resistanceMajor surgeryHemodynamic variablesFunction polymorphismLA tissuesRefractory periodWestern blottingProtein levelsGene sequence variantsMolecular changesLobectomy
2008
Activation of brain protein phosphatase‐1I following cardiac arrest and resuscitation involving an interaction with 14‐3‐3γ
Platholi J, Heerdt PM, Tung H, Hemmings HC. Activation of brain protein phosphatase‐1I following cardiac arrest and resuscitation involving an interaction with 14‐3‐3γ. Journal Of Neurochemistry 2008, 105: 2029-2038. PMID: 18284617, PMCID: PMC3872065, DOI: 10.1111/j.1471-4159.2008.05300.x.Peer-Reviewed Original ResearchConceptsGlobal cerebral ischemiaCerebral ischemiaCardiac arrestTransient global cerebral ischemiaTransient cerebral ischemiaPotential therapeutic targetRelevant pig modelIschemic brainNeuroprotective mechanismsControl brainsInhibitory modulatorTherapeutic targetPig modelIschemiaPig brainBrain proteinsMechanism-based approachBrainProtein betaResuscitationEnergy metabolismCritical regulatorArrestVivoActivationProtein phosphatase-2A is activated in pig brain following cardiac arrest and resuscitation
Zhang TT, Platholi J, Heerdt PM, Hemmings HC, Tung HY. Protein phosphatase-2A is activated in pig brain following cardiac arrest and resuscitation. Metabolic Brain Disease 2008, 23: 95-104. PMID: 18197471, DOI: 10.1007/s11011-007-9074-1.Peer-Reviewed Original Research
2007
Nitrosative Stress and Myocardial Sarcoplasmic Endoreticular Calcium Adenosine Triphosphatase Subtype 2a Activity after Lung Resection in Swine
Heerdt PM, Lane P, Pan BY, Schaefer U, Crabtree M, Hong R, Singer AA, Levi R, Park BJ. Nitrosative Stress and Myocardial Sarcoplasmic Endoreticular Calcium Adenosine Triphosphatase Subtype 2a Activity after Lung Resection in Swine. Anesthesiology 2007, 107: 954-962. PMID: 18043064, DOI: 10.1097/01.anes.0000291446.70921.61.Peer-Reviewed Original ResearchConceptsNitrosative stressForce-frequency relationLung resectionSERCA2a activityAcute oxidative stressOxidative stressPhosphorylation stateSubcellular processesBiochemical basisProtein phospholambanDisease-associated oxidative stressRegulatory protein phospholambanPhospholamban phosphorylationReticular membranesProtein expressionImpaired calcium cyclingPhosphorylationWestern blottingExpressionPerioperative changesUpper lobectomyPhospholamban expressionSham groupAcute eventChronic illnessDifferential regulation of protein phosphatase-1I by neurabin
Bullock SA, Platholi J, Gjyrezi A, Heerdt PM, Tung HY, Hemmings HC. Differential regulation of protein phosphatase-1I by neurabin. Biochemical And Biophysical Research Communications 2007, 358: 140-144. PMID: 17467665, PMCID: PMC1989152, DOI: 10.1016/j.bbrc.2007.04.076.Peer-Reviewed Original ResearchConceptsProtein phosphatase 1Phosphatase 1Protein phosphatase 1IProtein phosphataseActivation domainMultimeric complexesRegulatory subunitCatalytic subunitSubcellular localizationProtein kinaseSubstrate specificityRegulatory proteinsUnidentified proteinsNeurabinDifferential regulationNovel mechanismProteinSubunitsRegulationMajor formDistinct formsDependent formKinaseActinActivator
2006
Systemic oxidative stress associated with lung resection during single lung ventilation
Heerdt PM, Lane PB, Crabtree MJ, Park BJ. Systemic oxidative stress associated with lung resection during single lung ventilation. European Journal Of Cardio-Thoracic Surgery 2006, 30: 568-569. PMID: 16857372, DOI: 10.1016/j.ejcts.2006.05.022.Peer-Reviewed Original Research
1998
Disparity of Isoflurane Effects on Left and Right Ventricular Afterload and Hydraulic Power Generation in Swine
Heerdt P, Gandhi C, Dickstein M. Disparity of Isoflurane Effects on Left and Right Ventricular Afterload and Hydraulic Power Generation in Swine. Anesthesia & Analgesia 1998, 87: 511-521.. DOI: 10.1213/00000539-199809000-00002.Peer-Reviewed Original ResearchConceptsPreload recruitable stroke work slopeDose-related decreaseRight ventricleLeft ventricleISO groupMinimum alveolar anesthetic concentration (MAC) isofluraneIso animalsPulmonary arterial blood flowIsoflurane-induced alterationsTotal arterial resistanceDose-related effectsEffects of isofluranePeak systolic pressureAutonomic nervous activityArterial blood flowGroups of swineRegional segment lengthVolatile Anesthetic EffectsEjection of bloodBiventricular contractilityRV contractilityVascular effectsVentricular afterloadSystolic pressureLV afterloadDisparity of isoflurane effects on left and right ventricular afterload and hydraulic power generation in swine.
Heerdt P, Gandhi C, Dickstein M. Disparity of isoflurane effects on left and right ventricular afterload and hydraulic power generation in swine. Anesthesia & Analgesia 1998, 87: 511-21. PMID: 9728819, DOI: 10.1097/00000539-199809000-00002.Peer-Reviewed Original ResearchConceptsPreload recruitable stroke work slopeDose-related decreaseRight ventricleLeft ventricleISO groupMinimum alveolar anesthetic concentration (MAC) isofluraneIso animalsPulmonary arterial blood flowIsoflurane-induced alterationsRight ventricular afterloadTotal arterial resistanceDose-related effectsEffects of isofluranePeak systolic pressureAutonomic nervous activityArterial blood flowGroups of swineRegional segment lengthVolatile Anesthetic EffectsEjection of bloodBiventricular contractilityRV contractilityVascular effectsVentricular afterloadSystolic pressure
1997
Effects of Vasoactive Medications on the Blood Flow of Island Musculocutaneous Flaps in Swine
Cordeiro P, Santamaria E, Hu Q, Heerdt P. Effects of Vasoactive Medications on the Blood Flow of Island Musculocutaneous Flaps in Swine. Annals Of Plastic Surgery 1997, 39: 524-531. PMID: 9374150, DOI: 10.1097/00000637-199711000-00013.Peer-Reviewed Original ResearchConceptsCardiac outputHigh dosesBlood flowMusculocutaneous flapFlap flowPoor-risk patientsRectus abdominis musculocutaneous flapArterial blood pressureDoses of phenylephrineTotal cardiac outputMicrosurgical free tissue transferAortic root pressureMusculocutaneous flap modelFree tissue transferPressure/flow relationshipVasoactive medicationsRisk patientsVasopressor drugsBlood pressureVasoactive substancesPulmonary arteryVasoactive agentsHemodynamic parametersHemodynamic studiesDobutamine
1996
Nitric oxide synthesis inhibition and right ventricular systolic function in swine
Heerdt P, Pleimann B. Nitric oxide synthesis inhibition and right ventricular systolic function in swine. Journal Of Cardiothoracic And Vascular Anesthesia 1996, 10: 909-914. PMID: 8969400, DOI: 10.1016/s1053-0770(96)80055-3.Peer-Reviewed Original ResearchConceptsRV end-diastolic pressureTotal arterial resistanceL-NAMERV afterloadPA elastanceArterial resistanceNitric oxide synthesis inhibitor NG-nitroNitric oxide synthesis inhibitionRight ventricular systolic functionL-arginine methyl esterMean PA pressurePulmonary arterial pressureRight ventricular contractilityVentricular systolic functionEnd-diastolic pressureIndex of contractilityPeak ejection rateUniversity animal laboratoryLarge pulmonary vesselsIndex of RVRV powerArterial pressureSystolic functionNG-nitroResistance vessels