2016
Mitochondria controlled by UCP2 determine hypoxia-induced synaptic remodeling in the cortex and hippocampus
Varela L, Schwartz ML, Horvath TL. Mitochondria controlled by UCP2 determine hypoxia-induced synaptic remodeling in the cortex and hippocampus. Neurobiology Of Disease 2016, 90: 68-74. PMID: 26777666, DOI: 10.1016/j.nbd.2016.01.004.Peer-Reviewed Original ResearchConceptsHippocampal neuronsMitochondria-endoplasmic reticulum interactionUCP2-KO miceEarly postnatal exposureLoss of synapsesOxygen tensionHigher brain regionsAdaptive mitochondrial responsesProtein 2 expressionHypothalamic circuitsPostnatal exposureKO miceSynaptic remodelingSystemic metabolismSynaptic inputsBrain cellsMetabolic controlNeuronal mitochondriaBrain regionsAdaptive responseNeuronsHippocampusMitochondrial dynamicsMetabolic challengesCortex
2012
Species-Dependent Posttranscriptional Regulation of NOS1 by FMRP in the Developing Cerebral Cortex
Kwan KY, Lam MM, Johnson MB, Dube U, Shim S, Rašin MR, Sousa AM, Fertuzinhos S, Chen JG, Arellano JI, Chan DW, Pletikos M, Vasung L, Rowitch DH, Huang EJ, Schwartz ML, Willemsen R, Oostra BA, Rakic P, Heffer M, Kostović I, Judaš M, Šestan N. Species-Dependent Posttranscriptional Regulation of NOS1 by FMRP in the Developing Cerebral Cortex. Cell 2012, 149: 899-911. PMID: 22579290, PMCID: PMC3351852, DOI: 10.1016/j.cell.2012.02.060.Peer-Reviewed Original ResearchConceptsNeuronal nitric oxide synthase 1Pyramidal neuronsNOS1 mRNANitric oxide synthase 1Mouse pyramidal neuronsOrofacial motor cortexFMRP-deficient miceFragile X syndromeCerebral cortexMotor cortexCognitive dysfunctionEarly synaptogenesisLoss of functionMonogenic causesNeocortical circuitsLayer 5Human neocortexProtein levelsNeuronsIntellectual disabilityBroca's areaNOS1 proteinCortexSynthase 1FXS cases
2006
Midline radial glia translocation and corpus callosum formation require FGF signaling
Smith KM, Ohkubo Y, Maragnoli ME, Rašin M, Schwartz ML, Šestan N, Vaccarino FM. Midline radial glia translocation and corpus callosum formation require FGF signaling. Nature Neuroscience 2006, 9: 787-797. PMID: 16715082, DOI: 10.1038/nn1705.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAstrocytesCell MovementCell ShapeCerebral CortexCorpus CallosumDown-RegulationFemaleFibroblast Growth Factor 8Fibroblast Growth FactorsGrowth ConesMaleMiceMice, KnockoutMice, TransgenicNeurogliaReceptor, Fibroblast Growth Factor, Type 1Receptor, Fibroblast Growth Factor, Type 2RNA InterferenceSignal TransductionConceptsRadial glial cellsGlial cellsSomal translocationRadial gliaCorpus callosum formationReceptor 1 geneCallosal dysgenesisCerebral cortexFibroblast growth factor receptor 1 (FGFR1) geneIndusium griseumDorsomedial cortexDorsolateral cortexKnockout miceCortexAstrogliaApical endfeetFGFR1 geneAstrocytesGliaAxon guidanceDorsal midlinePrecise targetingCellsUnexpected roleFGF
1999
6 Fibroblast Growth Factor Signaling Regulates Growth and Morphogenesis at Multiple Steps during Brain Development11This work represents a collaboration between the laboratories of the first two authors.
Vaccarino F, Schwartz M, Raballo R, Rhee J, Lyn-Cook R. 6 Fibroblast Growth Factor Signaling Regulates Growth and Morphogenesis at Multiple Steps during Brain Development11This work represents a collaboration between the laboratories of the first two authors. Current Topics In Developmental Biology 1999, 46: 179-200. PMID: 10417880, DOI: 10.1016/s0070-2153(08)60329-4.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsCentral nervous system regionsNervous system regionsCentral nervous systemRole of FGF2Growth factor familyCerebral cortexFibroblast growth factor (FGF) familyCortical developmentNervous systemFibroblast growth factor (FGF) signalingGrowth factor signalingSystem regionsFactor signalingMolecular mechanismsCoordinated activationDistinct patternsTarget genesFGF2FGFFactor familyCortex
1995
Basic Fibroblast Growth Factor Increases the Number of Excitatory Neurons Containing Glutamate in the Cerebral Cortex
Vaccarino F, Schwartz M, Hartigan D, Leckman J. Basic Fibroblast Growth Factor Increases the Number of Excitatory Neurons Containing Glutamate in the Cerebral Cortex. Cerebral Cortex 1995, 5: 64-78. PMID: 7719131, DOI: 10.1093/cercor/5.1.64.Peer-Reviewed Original ResearchConceptsBasic fibroblast growth factorNerve growth factorGlutamate-containing neuronsCerebral cortexFibroblast growth factorGrowth factorAspartate-containing neuronsDifferent neurotransmitter phenotypesNumber of GABARatio of glutamateStem cellsNeurotransmitter phenotypeExcitatory neuronsInhibitory neuronsRat telencephalonVentricular zoneBFGF mRNAGABANeuronsCortexGlutamateDiffusible factorsThreefold increaseCellsFactors
1991
Early phenotype expression of cortical neurons: evidence that a subclass of migrating neurons have callosal axons.
Schwartz ML, Rakic P, Goldman-Rakic PS. Early phenotype expression of cortical neurons: evidence that a subclass of migrating neurons have callosal axons. Proceedings Of The National Academy Of Sciences Of The United States Of America 1991, 88: 1354-1358. PMID: 1705036, PMCID: PMC51016, DOI: 10.1073/pnas.88.4.1354.Peer-Reviewed Original Research
1990
Development and Plasticity of the Primate Cerebral Cortex
Schwartz M, Goldman-Rakic P. Development and Plasticity of the Primate Cerebral Cortex. Clinics In Perinatology 1990, 17: 83-102. PMID: 2318019, DOI: 10.1016/s0095-5108(18)30591-8.Peer-Reviewed Original ResearchConceptsPrefrontal cortexSensory areasCorticocortical connectivitySensory regionsPrimate cerebral cortexSensory cortical regionsMonkey prefrontal cortexCallosal neuronsCerebral cortexSynaptic contactsPostnatal periodAssociation areasVisual cortexCortical regionsPrenatal periodCortexNonsensory regionsAdultlike patternNonhuman primatesConnectional organizationDendritic surfaceMonthsEarly appearanceEnvironmental stimulationStimulation
1989
GABA-immunoreactive neurons in the mediodorsal nucleus of the monkey thalamus.
Clark A, Schwartz M, Goldman-Rakic P. GABA-immunoreactive neurons in the mediodorsal nucleus of the monkey thalamus. Journal Of Chemical Neuroanatomy 1989, 2: 259-67. PMID: 2803601.Peer-Reviewed Original ResearchConceptsGABA-immunoreactive neuronsMediodorsal nucleusParvocellular divisionInhibitory local circuit neuronsPrefrontal cortexLocal circuit organizationLocal circuit neuronsGABA-immunoreactive cellsIntensity of reactivityThalamo-cortical pathwaysGamma-aminobutyric acidCircuit neuronsParvocellular subdivisionMagnocellular neuronsMonkey thalamusBrain circuitryDorsolateral areaNeuronsCircuit organizationIntrinsic organizationThalamusCortexPresent studyFunctional dualityCells
1988
Periodicity of GABA-containing cells in primate prefrontal cortex
Schwartz M, Zheng D, Goldman-Rakic P. Periodicity of GABA-containing cells in primate prefrontal cortex. Journal Of Neuroscience 1988, 8: 1962-1970. PMID: 3385485, PMCID: PMC6569329, DOI: 10.1523/jneurosci.08-06-01962.1988.Peer-Reviewed Original ResearchConceptsPrincipal sulcusInhibitory local circuit neuronsLocal circuit neuronsPrimate prefrontal cortexColumns of neuronsCommon physiological propertiesCircuit neuronsGABA cellsImmunoreactive cellsSensory cortexFrontal lobeMacaque monkeysPrefrontal cortexCortexGABATangential distributionNeuronsSulcusCellsPhysiological propertiesCell dispositionAfferentsFindingsFirst indicationGapless series
1984
Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey
Goldman-Rakic P, Selemon L, Schwartz M. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 1984, 12: 719-743. PMID: 6472617, DOI: 10.1016/0306-4522(84)90166-0.Peer-Reviewed Original ResearchConceptsDorsolateral prefrontal cortexPrefrontal cortexParahippocampal gyrusTransitional cortexReciprocal projectionsHippocampal formationHorseradish peroxidase histochemistryFronto-occipital fasciculusPrestriate areasNeurons projectRhinal sulcusAfferent inputPrefrontal projectionsPosterior subdivisionsCaudal partCaudomedial lobuleCytoarchitectonic areasPosterior cingulatePresubiculumCingulum bundleCortical regionsParahippocampal cortexRhesus monkeysCortexHippocampusColumnar organization of callosal and associational projections from rat frontal cortex
Isseroff A, Schwartz M, Dekker J, Goldman-Rakic P. Columnar organization of callosal and associational projections from rat frontal cortex. Brain Research 1984, 293: 213-223. PMID: 6421457, DOI: 10.1016/0006-8993(84)91228-9.Peer-Reviewed Original ResearchConceptsRat frontal cortexFrontal cortexCoronal sectionsHomotopic contralateral areasIpsilateral somatosensory cortexSerial coronal sectionsCortico-cortical fibersCallosal projectionsAssociational projectionsSomatosensory cortexContralateral areaHRP histochemistryAssociational connectionsTerminal fieldsArea 6CortexTerminal labelMammalian neocortexColumnar distributionCallosalColumnar organizationTerminal organizationCell labelPrecise registerNeocortex
1982
Single cortical neurones have axon collaterals to ipsilateral and contralateral cortex in fetal and adult primates
Schwartz M, Goldman-Rakic P. Single cortical neurones have axon collaterals to ipsilateral and contralateral cortex in fetal and adult primates. Nature 1982, 299: 154-155. PMID: 7110334, DOI: 10.1038/299154a0.Peer-Reviewed Original ResearchConceptsCortical neuronesDivergent axon collateralsSingle cortical neuronesHeterotopic regionContralateral cortexAxon collateralsCallosal axonsContralateral hemisphereAdult neocortexAdult brainCortical areasCytoarchitectonic areasCell bodiesNeuronesAdult primatesSuch neuronesAxonsCollateralsCallosalNeocortexCortexBrainInterdigitation of Contralateral and Ipsilateral Columnar Projections to Frontal Association Cortex in Primates
Goldman-Rakic P, Schwartz M. Interdigitation of Contralateral and Ipsilateral Columnar Projections to Frontal Association Cortex in Primates. Science 1982, 216: 755-757. PMID: 6177037, DOI: 10.1126/science.6177037.Peer-Reviewed Original Research