2024
Cytosolic calcium regulates hepatic mitochondrial oxidation, intrahepatic lipolysis, and gluconeogenesis via CAMKII activation
LaMoia T, Hubbard B, Guerra M, Nasiri A, Sakuma I, Kahn M, Zhang D, Goodman R, Nathanson M, Sancak Y, Perelis M, Mootha V, Shulman G. Cytosolic calcium regulates hepatic mitochondrial oxidation, intrahepatic lipolysis, and gluconeogenesis via CAMKII activation. Cell Metabolism 2024, 36: 2329-2340.e4. PMID: 39153480, PMCID: PMC11446666, DOI: 10.1016/j.cmet.2024.07.016.Peer-Reviewed Original ResearchNeutrophils insert elastase into hepatocytes to regulate calcium signaling in alcohol-associated hepatitis
Ogino N, Leite M, Guerra M, Kruglov E, Asashima H, Hafler D, Ito T, Pereira J, Peiffer B, Sun Z, Ehrlich B, Nathanson M. Neutrophils insert elastase into hepatocytes to regulate calcium signaling in alcohol-associated hepatitis. Journal Of Clinical Investigation 2024, 134: e171691. PMID: 38916955, PMCID: PMC11324315, DOI: 10.1172/jci171691.Peer-Reviewed Original ResearchAlcohol-associated hepatitisReduced cell proliferationCalcium channel expressionCalcium signaling mechanismsIntracellular calcium channelsCell proliferationRegulate calcium signalingNeutrophil extracellular trapsChannel expressionNeutrophil granule proteinsCalcium channelsNeutrophil infiltrationPatient specimensGranule proteasesMouse modelHealthy subjectsLiver diseaseExtracellular trapsCalcium signalingSerpin E2NeutrophilsElastase activityHepatitisTissue remodelingSignaling mechanisms1571-P: CIDEB and CGI-58 Regulate Liver Lipid Droplet Size with Cholesterol Content, Linking to Inflammation and Fibrosis in Metabolic Dysfunction–Associated Steatohepatitis
SAKUMA I, GASPAR R, NASIRI A, KAHN M, ZHENG J, GUERRA M, YIMLAMAI D, MURRAY S, PERELIS M, BARNES W, VATNER D, PETERSEN K, SAMUEL V, SHULMAN G. 1571-P: CIDEB and CGI-58 Regulate Liver Lipid Droplet Size with Cholesterol Content, Linking to Inflammation and Fibrosis in Metabolic Dysfunction–Associated Steatohepatitis. Diabetes 2024, 73 DOI: 10.2337/db24-1571-p.Peer-Reviewed Original ResearchLipid droplet sizeCGI-58Choline-deficient l-amino acid-defined high-fat dietGlycerol-3-phosphate acyltransferaseAntisense oligonucleotidesComparative gene identification-58Glycerol-3-phosphateLoss of function mutationsLipid droplet morphologyExpression of CGI-58Liver inflammationCidebCholesterol contentFunction mutationsL-amino acid-defined high-fat dietComplications of type 2 diabetesMolecular mechanismsDevelopment of liver inflammationMacrophage crown-like structuresType 2 diabetesHigh-fat dietCrown-like structuresASO treatmentGPAMKnockdown292-OR: Coenzyme A Synthase Knockdown Alleviates Metabolic Dysfunction–Associated Steatohepatitis via Decreasing Cholesterol in Liver Lipid Droplets
SAKUMA I, GASPAR R, NASIRI A, KAHN M, GUERRA M, YIMLAMAI D, MURRAY S, PERELIS M, BARNES W, VATNER D, PETERSEN K, SAMUEL V, SHULMAN G. 292-OR: Coenzyme A Synthase Knockdown Alleviates Metabolic Dysfunction–Associated Steatohepatitis via Decreasing Cholesterol in Liver Lipid Droplets. Diabetes 2024, 73 DOI: 10.2337/db24-292-or.Peer-Reviewed Original ResearchCholine-deficient l-amino acid-defined high-fat dietAccumulation of cholesterolMRNA expressionPlasma ALTL-amino acid-defined high-fat dietProtective effectLiver lipid dropletsType 2 diabetesPotential therapeutic approachHigh-fat dietDecreased plasma ALTFibrosis markersFree cholesterol accumulationLipid dropletsLiver inflammationDay 1Macrophage markersHepatic inflammationMouse modelMarker expressionTherapeutic approachesDay 2Day 3Day 7Fibrosis
2023
1558-P: The Mitochondrial Calcium Uniporter Regulates Hepatic Mitochondrial Oxidation and Intracellular Redox In Vivo
LAMOIA T, HUBBARD B, GUERRA M, GOODMAN R, NATHANSON M, SHULMAN G. 1558-P: The Mitochondrial Calcium Uniporter Regulates Hepatic Mitochondrial Oxidation and Intracellular Redox In Vivo. Diabetes 2023, 72 DOI: 10.2337/db23-1558-p.Peer-Reviewed Original ResearchNonalcoholic fatty liver diseaseHepatic mitochondrial oxidationMitochondrial calcium uniporterHepatocellular redox stateFatty liver diseaseEctopic lipid accumulationType 2 diabetesHepatic lipid contentNovel therapeutic targetMitochondrial oxidationHepatic triacylglycerol contentMitochondrial calcium influxMitochondrial redox ratioMitochondrial calciumKnockout mouse modelFortress BiotechMitochondrial fat oxidationNonalcoholic steatohepatitisLiver diseaseWT miceKO miceMetabolic dysfunctionCalcium uniporterCalcium influxMouse modelAbove the legal limit: Alcohol brings ER and mitochondria too close together
Guerra M, Nathanson M. Above the legal limit: Alcohol brings ER and mitochondria too close together. Cell Calcium 2023, 113: 102763. PMID: 37235972, PMCID: PMC10726477, DOI: 10.1016/j.ceca.2023.102763.Commentaries, Editorials and LettersMitochondrial calcium signaling in cholangiocarcinoma
Loyola-Machado A, Guerra M, Nathanson M. Mitochondrial calcium signaling in cholangiocarcinoma. Hepatoma Research 2023, 9: null-null. DOI: 10.20517/2394-5079.2023.28.Peer-Reviewed Original ResearchPrimary liver cancerNew pharmacological agentsPathogenesis of cholangiocarcinomaMitochondrial Ca2Liver cancerCholangiocarcinomaPharmacological agentsIntracellular Ca2Molecular alterationsDruggable targetsER-mitochondrial contact sitesCancer cellsKey regulatory moleculesMetabolic reprogramingReceptor familyMitochondrial healthMitochondrial calciumEnergy metabolismCell deathPathways of interestLatest findingsTreatmentCa2Regulatory moleculesContact sites
2020
Inositol 1,4,5 trisphosphate receptors in secretory epithelial cells of the gastrointestinal tract
Lemos F, Guerra M, de Fátima Leite M. Inositol 1,4,5 trisphosphate receptors in secretory epithelial cells of the gastrointestinal tract. Current Opinion In Physiology 2020, 17: 169-174. DOI: 10.1016/j.cophys.2020.08.003.Peer-Reviewed Original ResearchEpithelial cellsFatty liver diseaseIntracellular calcium signalingLiver diseaseAcute pancreatitisSecretory epithelial cellsPathophysiological roleGastrointestinal tractElectrolyte secretionSolid tumorsIntracellular Ca2Main intracellular Ca2Number of diseasesDiseaseCell proliferationCalcium signalingEnergy metabolismReceptorsMolecular mechanismsSubcellular localizationTrisphosphate receptorPhysiological functionsCellsInositol 1Ca2Ca2+ Signaling in the Liver
Guerra M, Leite M, Nathanson M. Ca2+ Signaling in the Liver. 2020, 496-508. DOI: 10.1002/9781119436812.ch40.ChaptersBile duct epitheliumDuct epitheliumNon-alcoholic fatty liver diseaseBile acid-independent bile flowBile acid-dependent flowFatty liver diseaseLiver diseaseBile flowElectrolyte secretionLipid metabolismGrowth factorLiverCell populationsRat liverVariety of mechanismsEpitheliumCa2Recent studiesCell cycleHepatocytesLesser extentPathogenesisDiseaseNeurotransmittersHormone
2015
Signaling pathways in biliary epithelial cells
Leite M, Guerra M, Andrade V, Nathanson M. Signaling pathways in biliary epithelial cells. 2015, 15-33. DOI: 10.1002/9781118663387.ch2.Peer-Reviewed Original ResearchBiliary epithelial cellsEpithelial cellsFormation of bileSurface membrane receptorsBiliary treeDuctal bileIntracellular signal transduction pathwaysCanalicular bileGrowth factorCholangiocytesBileCell functionPeptide hormonesBile saltsDetoxification of xenobioticsMembrane receptorsSignal transduction pathwaysTransduction pathwaysSignaling pathways in biliary epithelial cells
Leite Mde, F., et al. (2015). Signaling Pathways in Liver Diseases. J. F. Dufour and P. A. Clavien, Wiley-Blackwell: 520.Chapters
2009
Ca2+ Signaling in the Liver
Leite F, Guerra M, Nathanson M. Ca2+ Signaling in the Liver. 2009, 485-510. DOI: 10.1002/9780470747919.ch32.Chapters
2006
Corrigendum to “Calcium release from ryanodine receptors in the nucleoplasmic reticulum” [Cell Calcium 39 (2006) 65–73]
Marius P, Guerra M, Nathanson M, Ehrlich B, Leite M. Corrigendum to “Calcium release from ryanodine receptors in the nucleoplasmic reticulum” [Cell Calcium 39 (2006) 65–73]. Cell Calcium 2006, 39: 551. DOI: 10.1016/j.ceca.2006.02.001.Peer-Reviewed Original Research
2005
Calcium release from ryanodine receptors in the nucleoplasmic reticulum
Marius P, Guerra MT, Nathanson MH, Ehrlich BE, Leite MF. Calcium release from ryanodine receptors in the nucleoplasmic reticulum. Cell Calcium 2005, 39: 65-73. PMID: 16289270, DOI: 10.1016/j.ceca.2005.09.010.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalciumCalcium ChannelsCalcium SignalingCell LineCell NucleusCytoplasmDantroleneEndoplasmic ReticulumInositol 1,4,5-TrisphosphateInositol 1,4,5-Trisphosphate ReceptorsMiceMicroscopy, FluorescenceMuscle, SkeletalNuclear EnvelopeReceptors, Cytoplasmic and NuclearRyanodine Receptor Calcium Release ChannelConceptsNucleoplasmic reticulumNuclear envelopeRyanodine receptorType 1 RyRGene transcriptionC2C12 cellsTrisphosphate receptorIntranuclear eventsCell typesReticulumDNA synthesisCell linesCell functionReticular networkSkeletal muscleRyR inhibitor dantroleneDiscrete regionsTwo-photon photoreleaseRyRsReceptorsNucleusCellsTranscription