2020
Islet transplantation in the subcutaneous space achieves long-term euglycaemia in preclinical models of type 1 diabetes
Yu M, Agarwal D, Korutla L, May CL, Wang W, Griffith NN, Hering BJ, Kaestner KH, Velazquez OC, Markmann JF, Vallabhajosyula P, Liu C, Naji A. Islet transplantation in the subcutaneous space achieves long-term euglycaemia in preclinical models of type 1 diabetes. Nature Metabolism 2020, 2: 1013-1020. PMID: 32895576, PMCID: PMC7572844, DOI: 10.1038/s42255-020-0269-7.Peer-Reviewed Original ResearchConceptsIslet transplantationSubcutaneous spacePancreatic isletsNon-human primate modelSyngeneic islet transplantationType 1 diabetesTreatment of typeLack of neovascularizationPancreatic islet transplantationNew therapeutic paradigmHuman pancreatic isletsSustained normoglycaemiaGraft survivalHypoxic cell deathPrimate modelPreclinical modelsAnimal modelsTransplantationSubcutaneous transplantationTherapeutic paradigmDiabetesEuglycaemiaCell deathIsletsTransplantation methodologies
2018
Donor tissue-specific exosome profiling enables noninvasive monitoring of acute rejection in mouse allogeneic heart transplantation
Habertheuer A, Korutla L, Rostami S, Reddy S, Lal P, Naji A, Vallabhajosyula P. Donor tissue-specific exosome profiling enables noninvasive monitoring of acute rejection in mouse allogeneic heart transplantation. Journal Of Thoracic And Cardiovascular Surgery 2018, 155: 2479-2489. PMID: 29499866, DOI: 10.1016/j.jtcvs.2017.12.125.Peer-Reviewed Original ResearchConceptsEarly acute rejectionDonor heartsAcute rejectionHeart transplantationStudy armsImmunologic rejectionMaintenance armHeterotopic heart transplantation modelAllogeneic heart transplantationTime pointsHeart transplantation modelHeterotopic heart transplantationAbsence of rejectionNovel biomarker platformDevelopment of biomarkersNoninvasive monitoringTransplant heartCardiac allograftsImmunocompetent recipientsAllograft monitoringImmunodeficient recipientsRecipient circulationTransplantation modelDay 1Total plasma
2013
NAC1, A POZ/BTB protein interacts with Parkin and may contribute to Parkinson’s disease
Korutla L, Furlong H, Mackler S. NAC1, A POZ/BTB protein interacts with Parkin and may contribute to Parkinson’s disease. Neuroscience 2013, 257: 86-95. PMID: 24231739, DOI: 10.1016/j.neuroscience.2013.11.001.Peer-Reviewed Original ResearchMeSH KeywordsAged, 80 and overAnimalsBrainCell Line, TransformedCentral Nervous SystemCysteine Proteinase InhibitorsCytoplasmDown-RegulationGlutathione TransferaseHumansImmunoprecipitationLeupeptinsMaleMiceNerve Tissue ProteinsNeuronsParkinson DiseaseProteasome Endopeptidase ComplexRepressor ProteinsUbiquitin-Protein LigasesConceptsNucleus accumbens-1Neuronal cell deathParkinson's diseaseDisease patientsParkinson's disease patientsProteasomal activityPOZ/BTB proteinCell deathNeuronal cellsDiseaseParkin levelsProtein levelsCell susceptibilityParkin proteinProteasome protein levelsPatientsProteasome activityUbiquitin-dependent proteasome degradationCell viabilityParkin degradationDeathParkinKey proteinsProteasome degradationToxicity
2008
NAC1, a POZ/BTB protein that functions as a corepressor
Korutla L, Wang P, Jackson T, Mackler S. NAC1, a POZ/BTB protein that functions as a corepressor. Neurochemistry International 2008, 54: 245-252. PMID: 19121354, DOI: 10.1016/j.neuint.2008.12.008.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineCentral Nervous SystemGenes, ReporterHumansKruppel-Like Transcription FactorsMiceNeoplasm ProteinsNerve Tissue ProteinsPromyelocytic Leukemia Zinc Finger ProteinProtein IsoformsProtein Structure, TertiaryProto-Oncogene ProteinsRecombinant Fusion ProteinsRepressor ProteinsTranscription, GeneticConceptsPOZ/BTB proteinBTB proteinsPOZ/BTB domainFusion proteinVP16 activation domainGST pulldown assaysGAL4 fusion proteinsTranscriptional repressor proteinZinc finger proteinProtein-protein interactionsB fusion proteinFinger proteinActivation domainTransient assaysNAC1 functionPulldown assaysRepressor proteinBTB domainNon-neuronal cellsTranscriptional inhibitionCorepressorNeuronal cellsProteinMature CNSSelective interaction
2007
NAC1 Regulates the Recruitment of the Proteasome Complex into Dendritic Spines
Shen H, Korutla L, Champtiaux N, Toda S, LaLumiere R, Vallone J, Klugmann M, Blendy J, Mackler S, Kalivas P. NAC1 Regulates the Recruitment of the Proteasome Complex into Dendritic Spines. Journal Of Neuroscience 2007, 27: 8903-8913. PMID: 17699672, PMCID: PMC6672176, DOI: 10.1523/jneurosci.1571-07.2007.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBicucullineCell Cycle ProteinsCells, CulturedCerebral CortexCullin ProteinsCysteine Proteinase InhibitorsDendritic SpinesEmbryo, MammalianGABA AntagonistsGreen Fluorescent ProteinsIntracellular Signaling Peptides and ProteinsLeupeptinsMiceMice, KnockoutNerve Tissue ProteinsNeuronsProteasome Endopeptidase ComplexProtein TransportRatsRepressor ProteinsRNA-Binding ProteinsTransfectionUbiquitinConceptsUbiquitin-proteasome systemDendritic spinesPostsynaptic densityProteolysis machineryProteasome complexTranscriptional proteinsProteasomeGene deletionSynaptic proteinsProteinCortical neuronsSynaptic remodelingSynaptic activitySynaptic plasticityBicucullinePotential missing linkRecruitmentSpineNeuronsNaC1Progressive accumulationMov34CullinMachineryProteolysisNAC1, a cocaine‐regulated POZ/BTB protein interacts with CoREST
Korutla L, Degnan R, Wang P, Mackler S. NAC1, a cocaine‐regulated POZ/BTB protein interacts with CoREST. Journal Of Neurochemistry 2007, 101: 611-618. PMID: 17254023, DOI: 10.1111/j.1471-4159.2006.04387.x.Peer-Reviewed Original ResearchConceptsPOZ/BTB proteinPOZ/BTB domainBTB proteinsBTB domainProtein-protein interactionsHEK293T cellsNeuro-2a cellsT cellsTranscriptional regulatorsRepressor proteinRat brain samplesBrain samplesCoRESTCoimmunoprecipitation studiesHomodimer formationHomodimer assemblyRepressor mechanismProtein expressionProteinDirect interactionEndogenous interactionPresent studyPox virus
2005
The POZ/BTB protein NAC1 interacts with two different histone deacetylases in neuronal‐like cultures
Korutla L, Wang P, Mackler S. The POZ/BTB protein NAC1 interacts with two different histone deacetylases in neuronal‐like cultures. Journal Of Neurochemistry 2005, 94: 786-793. PMID: 16033423, DOI: 10.1111/j.1471-4159.2005.03206.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBlotting, WesternButyratesCells, CulturedEnzyme InhibitorsGene Expression RegulationHippocampusHistone DeacetylasesHumansHydroxamic AcidsImmunoprecipitationMiceNerve Tissue ProteinsNeuroblastomaNeuronsPlasmidsProtein BindingProtein IsoformsRatsRepressor ProteinsTranscription, GeneticTransfectionTwo-Hybrid System TechniquesConceptsPOZ/BTB proteinProtein-protein interactionsBTB proteinsHistone deacetylasesPOZ domainTwo-hybridGlutathione S-transferase pulldownRecruit histone deacetylasesDifferent histone deacetylasesTranscriptional repressionGST pulldownSNAC1Histone deacetylase inhibitionCorepressorDeacetylasesRepressionDeacetylase inhibitionProteinPulldownHDAC-3NaC1MSin3ANucleus accumbensCNS regionsCoimmunoprecipitation
2003
The mouse nac1 gene, encoding a cocaine-regulated bric-a-brac tramtrac broad complex/pox virus and zinc finger protein, is regulated by ap1
Mackler S, Homan Y, Korutla L, Conti A, Blendy J. The mouse nac1 gene, encoding a cocaine-regulated bric-a-brac tramtrac broad complex/pox virus and zinc finger protein, is regulated by ap1. Neuroscience 2003, 121: 355-361. PMID: 14521994, DOI: 10.1016/s0306-4522(03)00376-2.Peer-Reviewed Original ResearchAnimalsBlotting, NorthernBlotting, SouthernCell DifferentiationCell Line, TumorChromosomes, Human, Pair 8Cloning, MolecularColforsinDNA ProbesDNA-Binding ProteinsDrosophilaDrosophila ProteinsExonsGene ExpressionHumansMiceMice, Inbred C57BLMutagenesisNerve Tissue ProteinsNeuroblastomaPromoter Regions, GeneticRatsRepressor ProteinsReverse Transcriptase Polymerase Chain ReactionRNA, MessengerSequence AlignmentSequence AnalysisTranscription Factor AP-1Transcription FactorsTransfectionZinc Fingers
1995
Inhibition of ligand-induced activation of epidermal growth factor receptor tyrosine phosphorylation by curcumin
Korutla L, Cheung J, Medelsohn J, Kumar R. Inhibition of ligand-induced activation of epidermal growth factor receptor tyrosine phosphorylation by curcumin. Carcinogenesis 1995, 16: 1741-1745. PMID: 7634398, DOI: 10.1093/carcin/16.8.1741.Peer-Reviewed Original ResearchConceptsGrowth stimulatory pathwaysTumor cell growthTime-dependent mannerAnti-proliferative strategyTyrosine phosphorylationEpidermal growth factorEpidermal growth factor receptor tyrosine phosphorylationCurcumin treatmentActivation of EGFCalcium releaseStimulatory pathwayReceptor tyrosine phosphorylationTreatment of cellsEGF receptor phosphorylationKinase inhibitorsGrowth factorSurface expressionReceptor phosphorylationHuman EGFCurcuminEGFInhibition of EGFPotent inhibitorActivationCell growth