2024
Monoclonal antibodies that block Roundabout 1 and 2 signaling target pathological ocular neovascularization through myeloid cells
Geraldo L, Xu Y, Mouthon G, Furtado J, Leser F, Blazer L, Adams J, Zhang S, Zheng L, Song E, Robinson M, Thomas J, Sidhu S, Eichmann A. Monoclonal antibodies that block Roundabout 1 and 2 signaling target pathological ocular neovascularization through myeloid cells. Science Translational Medicine 2024, 16: eadn8388. PMID: 39565875, DOI: 10.1126/scitranslmed.adn8388.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, MonoclonalCorneal NeovascularizationDisease Models, AnimalHumansIntercellular Signaling Peptides and ProteinsMiceMice, Inbred C57BLMyeloid CellsNeovascularization, PathologicNerve Tissue ProteinsReceptors, ImmunologicRetinaRetinal NeovascularizationSignal TransductionConceptsOxygen-induced retinopathyPathological ocular neovascularizationCorneal neovascularizationMyeloid cellsOcular neovascularizationHeterogeneous population of myeloid cellsBlood-retina barrier integrityPopulation of myeloid cellsActivation of myeloid cellsMonoclonal antibodiesOcular neovascular diseasesBlinding eye diseaseHuman monoclonal antibodyExtracellular domainMouse model in vivoModel in vivoMAb treatmentMyeloid populationsOIR retinasNeovascular diseasesVision lossEye diseaseSlit-RoboSlit-Robo signalingBlocking antibodies
2021
SLIT2/ROBO signaling in tumor-associated microglia/macrophages drives glioblastoma immunosuppression and vascular dysmorphia
Geraldo LH, Xu Y, Jacob L, Pibouin-Fragner L, Rao R, Maïssa N, Verreault M, Lemaire N, Knosp C, Lesaffre C, Daubon T, Dejaegher J, Solie L, Rudewicz J, Viel T, Tavitian B, De Vleeschouwer S, Sanson M, Bikfalvi A, Idbaih A, Lu QR, Lima F, Thomas. JL, Eichmann A, Mathivet T. SLIT2/ROBO signaling in tumor-associated microglia/macrophages drives glioblastoma immunosuppression and vascular dysmorphia. Journal Of Clinical Investigation 2021, 131 PMID: 34181595, PMCID: PMC8363292, DOI: 10.1172/jci141083.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain NeoplasmsDisease ProgressionGene Expression Regulation, NeoplasticGene Knockdown TechniquesGlioblastomaHeterograftsHumansImmune ToleranceIntercellular Signaling Peptides and ProteinsMacrophagesMiceMice, Inbred C57BLMicrogliaNerve Tissue ProteinsPrognosisReceptors, ImmunologicSignal TransductionTumor MicroenvironmentConceptsSLIT2/ROBOTumor growthPatient-derived GBM xenograftsTumor microenvironmentKnockdown of SLIT2Tumor vessel functionMouse glioma cellsImmunotherapeutic targetPoor survivalGBM xenograftsBrain tumorsGBM microenvironmentMacrophage invasionSLIT2 expressionMalignant progressionVessel functionMacrophage chemotaxisGlioma cellsEnhanced efficacySLIT2Migration of cellsImmunosuppressionImmunotherapyGene expression profilesRoundabout 1
2019
Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis
Genet G, Boyé K, Mathivet T, Ola R, Zhang F, Dubrac A, Li J, Genet N, Henrique Geraldo L, Benedetti L, Künzel S, Pibouin-Fragner L, Thomas JL, Eichmann A. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nature Communications 2019, 10: 2350. PMID: 31138815, PMCID: PMC6538628, DOI: 10.1038/s41467-019-10359-x.Peer-Reviewed Original ResearchMeSH KeywordsAcyltransferasesAnimalsCell MovementCell PolarityCell ProliferationCell SurvivalEndocytosisEndothelial CellsIntercellular Signaling Peptides and ProteinsMAP Kinase Signaling SystemMiceMice, KnockoutNeovascularization, PhysiologicNerve Tissue ProteinsP21-Activated KinasesReceptors, ImmunologicRetinal VesselsVascular Endothelial Growth Factor Receptor-2ConceptsEndophilin A2Endothelial cell migrationSprouting angiogenesisCell migrationFront-rear polarityBAR domain proteinsFront-rear polarizationClathrin-independent internalizationSpecific endocytic pathwaysVEGFR2 endocytosisEndocytic pathwayAngiogenesis defectsEffector PAKTip cellsSlit-RoboActivation of VEGFR2Downstream activationVEGFR2 internalizationCell behaviorPathological angiogenesisCritical mediatorEndocytosisPathological conditions
2012
Semaphorin3A, Neuropilin-1, and PlexinA1 Are Required for Lymphatic Valve Formation
Bouvrée K, Brunet I, del Toro R, Gordon E, Prahst C, Cristofaro B, Mathivet T, Xu Y, Soueid J, Fortuna V, Miura N, Aigrot MS, Maden CH, Ruhrberg C, Thomas JL, Eichmann A. Semaphorin3A, Neuropilin-1, and PlexinA1 Are Required for Lymphatic Valve Formation. Circulation Research 2012, 111: 437-445. PMID: 22723296, PMCID: PMC3861899, DOI: 10.1161/circresaha.112.269316.Peer-Reviewed Original ResearchAnimalsAnimals, NewbornAntibodies, NeutralizingBacterial ProteinsCells, CulturedEndothelial CellsGene Expression Regulation, DevelopmentalGenotypeGestational AgeHumansLuminescent ProteinsLymphatic VesselsMiceMice, KnockoutMice, TransgenicMorphogenesisNerve Tissue ProteinsNeuropilin-1PhenotypeReceptors, Cell SurfaceRNA, MessengerSemaphorin-3AVascular Endothelial Growth Factor Receptor-3
2011
Paracrine Pax6 activity regulates oligodendrocyte precursor cell migration in the chick embryonic neural tube
Di Lullo E, Haton C, Le Poupon C, Volovitch M, Joliot A, Thomas JL, Prochiantz A. Paracrine Pax6 activity regulates oligodendrocyte precursor cell migration in the chick embryonic neural tube. Development 2011, 138: 4991-5001. PMID: 22028031, DOI: 10.1242/dev.066282.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedCell DifferentiationCell MovementChick EmbryoExtracellular SpaceEye ProteinsHomeodomain ProteinsNerve Tissue ProteinsNeural TubeOligodendrogliaPaired Box Transcription FactorsParacrine CommunicationPAX6 Transcription FactorProtein TransportRepressor ProteinsStem CellsSubstrate SpecificityTissue DistributionConceptsPrecursor cell migrationPax6 proteinPax6 activityChick embryonic neural tubeNeural tubeCell migrationChick neural tubeOligodendrocyte precursor cell migrationEmbryonic neural tubeHomeoprotein transcription factorOPC migrationGene transfer experimentsEmbryonic polarityTranscription factorsIntercellular transferExtracellular expressionPhysiological importancePax6Visual cortex plasticityProteinFundamental rolePossible roleParacrine effectsExpressionPax6 antibodiesRobo4 Maintains Vessel Integrity and Inhibits Angiogenesis by Interacting with UNC5B
Koch AW, Mathivet T, Larrivée B, Tong RK, Kowalski J, Pibouin-Fragner L, Bouvrée K, Stawicki S, Nicholes K, Rathore N, Scales SJ, Luis E, del Toro R, Freitas C, Bréant C, Michaud A, Corvol P, Thomas JL, Wu Y, Peale F, Watts RJ, Tessier-Lavigne M, Bagri A, Eichmann A. Robo4 Maintains Vessel Integrity and Inhibits Angiogenesis by Interacting with UNC5B. Developmental Cell 2011, 20: 33-46. PMID: 21238923, DOI: 10.1016/j.devcel.2010.12.001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, BlockingBlood VesselsCapillary PermeabilityEnzyme ActivationHumansLigandsMiceModels, BiologicalNeovascularization, PathologicNerve Tissue ProteinsNetrin ReceptorsProtein BindingReceptors, Cell SurfaceReceptors, ImmunologicRetinal VesselsSignal TransductionSrc-Family KinasesSus scrofaVascular Endothelial Growth Factor AConceptsProtein-protein interaction screenVascular endothelial growth factorFunction-blocking monoclonal antibodiesInteraction screenNovel functionGuidance receptorsExtracellular domainNetrin receptorsReceptor familyVessel integrityReceptor interactionInhibits angiogenesisRobo4Unexpected interactionsGrowth factorEndothelial cellsUNC5BVascular integrityEndothelial growth factorAngiogenesisIncreases angiogenesisReceptorsMonoclonal antibodiesIntegrityProtein
2010
Nitric Oxide Plays a Key Role in Myelination in the Developing Brain
Olivier P, Loron G, Fontaine R, Pansiot J, Dalous J, Thi H, Charriaut-Marlangue C, Thomas J, Mercier J, Gressens P, Baud O. Nitric Oxide Plays a Key Role in Myelination in the Developing Brain. Journal Of Neuropathology & Experimental Neurology 2010, 69: 828-837. PMID: 20613635, DOI: 10.1097/nen.0b013e3181ea5203.Peer-Reviewed Original ResearchMeSH KeywordsAdministration, InhalationAge FactorsAnimalsAnimals, NewbornAntigensBehavioral SymptomsBrainCell ProliferationCentral Nervous SystemDose-Response Relationship, DrugEnzyme InhibitorsExploratory BehaviorFemaleFree Radical ScavengersGene Expression Regulation, DevelopmentalIn Situ Nick-End LabelingKi-67 AntigenMaleMiceMice, Inbred C57BLMyelin Basic ProteinMyelin Proteolipid ProteinNerve Fibers, MyelinatedNerve Tissue ProteinsNeuronsNeuropsychological TestsNG-Nitroarginine Methyl EsterNitric OxideNitric Oxide Synthase Type IIO AntigensOligodendrogliaProteoglycansRatsRats, Sprague-DawleySpace PerceptionSpatial BehaviorStatistics, NonparametricConceptsEndogenous NONitric oxide synthase inhibitor N-nitro-L-arginine methyl esterN-nitro-L-arginine methyl esterL-NAME-treated animalsNitric oxidePerinatal brain damageSubsequent behavioral deficitsCentral nervous system myelinationNeonatal exposureC57BL/6 miceNeonatal periodBrain damagePromising therapyBehavioral deficitsMouse pupsImmature oligodendrocytesPotential new avenuesWhite matterLow dosesProliferative effectMyelination defectsMyelinationTransient increaseINODeleterious effects
2008
A novel role for anosmin‐1 in the adhesion and migration of oligodendrocyte precursors
Bribián A, Esteban P, Clemente D, Soussi‐Yanicostas N, Thomas J, Zalc B, de Castro F. A novel role for anosmin‐1 in the adhesion and migration of oligodendrocyte precursors. Developmental Neurobiology 2008, 68: 1503-1516. PMID: 18814310, DOI: 10.1002/dneu.20678.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAntibodiesCell AdhesionCell MovementCells, CulturedChemotactic FactorsCollagenCricetinaeCricetulusEmbryo, MammalianExtracellular Matrix ProteinsFibroblast Growth Factor 2GangliosidesGene Expression Regulation, DevelopmentalMiceNerve Tissue ProteinsOligodendrogliaReceptor, Fibroblast Growth Factor, Type 1RetinaRNA, MessengerStem CellsConceptsOptic nerveOligodendrocyte precursorsEntire optic nerveEmbryonic optic nerveRetinal ganglion cellsAnosmin-1Ganglion cellsPreoptic areaCell adhesion moleculeOPC migrationGrowth factorAdhesion moleculesFGF-2Novel roleGuidance cuesFGFR1Soluble formImpairsCellsECM moleculesNovel effectNerveBlockadeEmbryonic stagesAxonsStructural Requirement of TAG-1 for Retinal Ganglion Cell Axons and Myelin in the Mouse Optic Nerve
Chatzopoulou E, Miguez A, Savvaki M, Levasseur G, Muzerelle A, Muriel M, Goureau O, Watanabe K, Goutebroze L, Gaspar P, Zalc B, Karagogeos D, Thomas J. Structural Requirement of TAG-1 for Retinal Ganglion Cell Axons and Myelin in the Mouse Optic Nerve. Journal Of Neuroscience 2008, 28: 7624-7636. PMID: 18650339, PMCID: PMC6670848, DOI: 10.1523/jneurosci.1103-08.2008.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAxonsCell Adhesion Molecules, NeuronalCells, CulturedContactin 2Embryo, MammalianGene Expression Regulation, DevelopmentalLeukocyte L1 Antigen ComplexMiceMice, KnockoutMyelin SheathNerve Tissue ProteinsNeurogliaOptic NerveRetinaRetinal Ganglion CellsTranscription Factor Brn-3AConceptsOptic nerveRetinal ganglion cellsRGC axonsTAG-1Retinal ganglion cell axonsEmbryonic retinal ganglion cellsGanglion cell axonsMouse optic nerveLateral geniculate nucleusWhite matter axonsMyelin-forming cellsPersistent abnormalitiesGanglion cellsGlial cellsCell adhesion moleculeContralateral projectionsGeniculate nucleusCell axonsAstroglial networksRetinal axonsNerveAxonal tractsAxonal caliberMyelination defectsAxons
2007
Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis?
Williams A, Piaton G, Aigrot MS, Belhadi A, Théaudin M, Petermann F, Thomas JL, Zalc B, Lubetzki C. Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 2007, 130: 2554-2565. PMID: 17855378, DOI: 10.1093/brain/awm202.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAnimalsApoptosisCerebral CortexDisease Models, AnimalFemaleHumansIntracellular Signaling Peptides and ProteinsMaleMembrane ProteinsMiddle AgedMotor CortexMultiple SclerosisMyelin SheathNerve RegenerationNerve Tissue ProteinsNeurogliaNeuronsRatsRats, WistarRNA, MessengerSemaphorin-3ASignal TransductionUp-RegulationConceptsMultiple sclerosisSemaphorin 3AAbility of plaqueActive demyelinating lesionsNeuronal cell bodiesFailure of repairCentral nervous systemOligodendrocyte precursor cellsOligodendrocyte precursor cell migrationPrecursor cell migrationChronic plaquesDemyelinating lesionsDemyelinated plaquesMyelin repairDemyelinated axonsMS tissueNervous systemCell bodiesExperimental modelPlaquesLesionsPrecursor cellsSclerosisOligodendroglial migrationCell migration
2006
VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain
Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, Haiko P, Karkkainen MJ, Yuan L, Muriel MP, Chatzopoulou E, Bréant C, Zalc B, Carmeliet P, Alitalo K, Eichmann A, Thomas JL. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nature Neuroscience 2006, 9: 340-348. PMID: 16462734, DOI: 10.1038/nn1646.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainCell DifferentiationCells, CulturedEvolution, MolecularIntermediate Filament ProteinsLarvaLateral VentriclesMiceMice, KnockoutMice, TransgenicNerve Growth FactorsNerve Tissue ProteinsNestinNeuronsOligodendrogliaOptic NerveRatsRats, WistarStem CellsVascular Endothelial Growth Factor CVascular Endothelial Growth Factor Receptor-3Xenopus laevisConceptsNeural progenitor cellsReceptor VEGFR-3Mouse embryosNeural progenitorsVEGFR-3Progenitor cellsVertebrate embryonic brainBlood vessel defectsOligodendrocyte precursor cellsXenopus laevisAction of VEGFEmbryonic brainVascular endothelial growth factor CVEGF-C knockdownNeural cellsPrecursor cellsVessel defectsFactor CEmbryosGrowth factorProgenitorsCellsProliferation of OPCsVascular systemLymphatic vessels
2005
Oligodendrocyte development in the embryonic brain: the contribution of the plp lineage
Le Bras B, Chatzopoulou E, Heydon K, Martínez S, Ikenaka K, Prestoz L, Spassky N, Zalc B, Thomas JL. Oligodendrocyte development in the embryonic brain: the contribution of the plp lineage. The International Journal Of Developmental Biology 2005, 49: 209-220. PMID: 15906234, DOI: 10.1387/ijdb.041963bl.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedBrainCell MovementChick EmbryoMorphogenesisNerve Tissue ProteinsOligodendrogliaStem Cells
2002
Directional Guidance of Oligodendroglial Migration by Class 3 Semaphorins and Netrin-1
Spassky N, de Castro F, Le Bras B, Heydon K, Quéraud-LeSaux F, Bloch-Gallego E, Chédotal A, Zalc B, Thomas J. Directional Guidance of Oligodendroglial Migration by Class 3 Semaphorins and Netrin-1. Journal Of Neuroscience 2002, 22: 5992-6004. PMID: 12122061, PMCID: PMC6757938, DOI: 10.1523/jneurosci.22-14-05992.2002.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Adhesion MoleculesCell DivisionCell LineCell LineageCell MovementChemotaxisCulture TechniquesDCC ReceptorGlycoproteinsHumansMembrane ProteinsMiceNerve Growth FactorsNerve Tissue ProteinsNetrin ReceptorsNetrin-1Neuropilin-1OligodendrogliaOptic NerveReceptors, Cell SurfaceSemaphorin-3AStem CellsTumor Suppressor ProteinsConceptsOligodendrocyte precursor cellsEmbryonic optic nerveMigration of OPCsOptic nerveNetrin-1Sema 3ANetrin-1 receptorWhite matter tractsSema 3FMyelin-forming cellsColorectal cancerClass 3 semaphorinsLocalization of cellsNerveChemotactic effectNeuropilin-1Multiple fociFunctional migrationPrecursor cellsNetrin familyOligodendroglial migrationSemaphorinsNeural tubeDual effectGuidance cues
2001
Human medulloblastoma cell line DEV is a potent tool to screen for factors influencing differentiation of neural stem cells
Buzanska L, Spassky N, Belin M, Giangrande A, Guillemot F, Klämbt C, Labouesse M, Thomas J, Domanska‐Janik K, Zalc B. Human medulloblastoma cell line DEV is a potent tool to screen for factors influencing differentiation of neural stem cells. Journal Of Neuroscience Research 2001, 65: 17-23. PMID: 11433425, DOI: 10.1002/jnr.1123.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBasic Helix-Loop-Helix Transcription FactorsCaenorhabditis elegansCaenorhabditis elegans ProteinsCell DifferentiationCerebellar NeoplasmsCulture MediaDNA-Binding ProteinsDrosophilaDrosophila ProteinsGene ExpressionGreen Fluorescent ProteinsHumansIndicators and ReagentsLuminescent ProteinsMedulloblastomaNerve Tissue ProteinsNeurogliaNeuronsNeuropeptidesRepressor ProteinsStem CellsTrans-ActivatorsTranscription FactorsTransfectionTumor Cells, CulturedConceptsTranscription factorsDev cellsGlial specificationDrosophila glial cellsCell linesTranscription factor genesDifferent transcription factorsEmbryonic Drosophila CNSGlial cellsMost glial cellsFly gliaFunctional conservationMurine geneDrosophila CNSGlial fateNeural cell linesFactor genesNeural stem cellsProcess of specificationHuman neural cell linesFunction experimentsNeurogenin 1Neuronal differentiationOligodendroglial cell typesCell types
1999
Single or multiple oligodendroglial lineages: A controversy
Spassky N, Olivier C, Perez‐Villegas E, Goujet‐Zalc C, Martinez S, Thomas J, Zalc B. Single or multiple oligodendroglial lineages: A controversy. Glia 1999, 29: 143-148. PMID: 10625332, DOI: 10.1002/(sici)1098-1136(20000115)29:2<143::aid-glia7>3.0.co;2-d.Peer-Reviewed Original Research
1997
In situ expression of PLP/DM‐20, MBP, and CNP during embryonic and postnatal development of the jimpy mutant and of transgenic mice overexpressing PLP
Peyron F, Timsit S, Thomas J, Kagawa T, Ikenaka K, Zalc B. In situ expression of PLP/DM‐20, MBP, and CNP during embryonic and postnatal development of the jimpy mutant and of transgenic mice overexpressing PLP. Journal Of Neuroscience Research 1997, 50: 190-201. PMID: 9373029, DOI: 10.1002/(sici)1097-4547(19971015)50:2<190::aid-jnr8>3.0.co;2-a.Peer-Reviewed Original ResearchConceptsPLP/DMCyclic nucleotide phosphodiesteraseDM-20PLP geneMyelin basic proteinDM-20 mRNAPattern of expressionEmbryonic developmentLevel of expressionJimpy mutantPeripheral nervous systemTransgenic micePrecursors of oligodendrocytesSpatiotemporal expressionDistinct poolsNeural tubeCentral nervous system