2024
Hemodynamics and Wall Mechanics of Vascular Graft Failure
Szafron J, Heng E, Boyd J, Humphrey J, Marsden A. Hemodynamics and Wall Mechanics of Vascular Graft Failure. Arteriosclerosis Thrombosis And Vascular Biology 2024, 44: 1065-1085. PMID: 38572650, PMCID: PMC11043008, DOI: 10.1161/atvbaha.123.318239.Peer-Reviewed Original ResearchConceptsVascular graftsTissue-engineered vascular graftsWall mechanicsSolid mechanicsVascular graft failureLoad magnitudeMechanobiological processesLoadMechanobiological stimuliMechanosensitive signaling pathwaysBiomechanical stateWallGraft failureBiomechanical loadingCongenital heart surgeryCoronary artery bypass graftingEnd-organ dysfunctionGraft materialArtery bypass graftingFeedback loopComputational toolsTissue engineered vascular grafts are resistant to the formation of dystrophic calcification
Turner M, Blum K, Watanabe T, Schwarz E, Nabavinia M, Leland J, Villarreal D, Schwartzman W, Chou T, Baker P, Matsumura G, Krishnamurthy R, Yates A, Hor K, Humphrey J, Marsden A, Stacy M, Shinoka T, Breuer C. Tissue engineered vascular grafts are resistant to the formation of dystrophic calcification. Nature Communications 2024, 15: 2187. PMID: 38467617, PMCID: PMC10928115, DOI: 10.1038/s41467-024-46431-4.Peer-Reviewed Original ResearchConceptsTissue-engineered vascular graftsTissue engineered vascular graftsVascular graftsCongenital heart surgeryComputational fluid dynamics simulationsFluid dynamics simulationsPolytetrafluoroethylene graftHeart surgeryDystrophic calcificationRetrospective clinical studyGraft complianceDegree of calcificationClinical studiesProsthetic biomaterialsBiomaterialsAnimal modelsPolytetrafluoroethyleneHemodynamic performanceNatural historyCalcificationGraftOvine modelVascular conduitsLong-term successSurgery
2014
A hypothesis-driven parametric study of effects of polymeric scaffold properties on tissue engineered neovessel formation
Miller KS, Khosravi R, Breuer CK, Humphrey JD. A hypothesis-driven parametric study of effects of polymeric scaffold properties on tissue engineered neovessel formation. Acta Biomaterialia 2014, 11: 283-294. PMID: 25288519, PMCID: PMC4256111, DOI: 10.1016/j.actbio.2014.09.046.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood VesselsCompressive StrengthComputer SimulationComputer-Aided DesignElastic ModulusEndothelial CellsEquipment DesignEquipment Failure AnalysisHardnessHumansMaterials TestingModels, ChemicalNeovascularization, PhysiologicPolymersTensile StrengthTissue EngineeringTissue ScaffoldsConceptsScaffold parametersMaterial propertiesScaffold structureParametric studyFibrous scaffoldsScaffold propertiesBurst pressureConstitutive relationsSuture retentionNeotissue developmentTissue engineeringMechanobiological cuesNeovessel developmentFiber diameterNew modeling frameworkExperimental search spaceVascular graftsOptimal combinationPropertiesKey propertiesModeling frameworkParametersNumber of parametersComputational modelNative properties