2023
AutoCriteria: a generalizable clinical trial eligibility criteria extraction system powered by large language models
Datta S, Lee K, Paek H, Manion F, Ofoegbu N, Du J, Li Y, Huang L, Wang J, Lin B, Xu H, Wang X. AutoCriteria: a generalizable clinical trial eligibility criteria extraction system powered by large language models. Journal Of The American Medical Informatics Association 2023, 31: 375-385. PMID: 37952206, PMCID: PMC10797270, DOI: 10.1093/jamia/ocad218.Peer-Reviewed Original ResearchMeSH KeywordsBreast NeoplasmsEligibility DeterminationFemaleHumansInformation Storage and RetrievalLanguageNatural Language ProcessingConceptsLanguage modelInformation extraction systemOverall F1 scoreCriteria informationF1 scoreManual annotationScalable solutionContextual informationComplex scenariosContextual attributesExtraction systemReal-world settingsSystem evaluationModeling capabilitiesClinical trial protocol documentsInformationProtocol documents
2022
A comparative study of pre-trained language models for named entity recognition in clinical trial eligibility criteria from multiple corpora
Li J, Wei Q, Ghiasvand O, Chen M, Lobanov V, Weng C, Xu H. A comparative study of pre-trained language models for named entity recognition in clinical trial eligibility criteria from multiple corpora. BMC Medical Informatics And Decision Making 2022, 22: 235. PMID: 36068551, PMCID: PMC9450226, DOI: 10.1186/s12911-022-01967-7.Peer-Reviewed Original ResearchMeSH KeywordsClinical Trials as TopicEligibility DeterminationHumansInformation Storage and RetrievalLanguageMedicineNamesNatural Language ProcessingConceptsPre-trained language modelsNER taskUnstructured textEntity recognitionLanguage modelNatural language processing techniquesClinical trial eligibility criteriaLanguage processing techniquesData augmentation resultsData augmentation approachDomain-specific corpusBetter performanceTransformer modelCross-validation showMultiple data sourcesEligibility criteria textBiomedical domainEmbedding modelsNER performanceAugmentation approachContextual embeddingsMeaningful informationEvaluation resultsSuch documentsProcessing techniquesCombining human and machine intelligence for clinical trial eligibility querying
Fang Y, Idnay B, Sun Y, Liu H, Chen Z, Marder K, Xu H, Schnall R, Weng C. Combining human and machine intelligence for clinical trial eligibility querying. Journal Of The American Medical Informatics Association 2022, 29: 1161-1171. PMID: 35426943, PMCID: PMC9196697, DOI: 10.1093/jamia/ocac051.Peer-Reviewed Original ResearchMeSH KeywordsArtificial IntelligenceCOVID-19Eligibility DeterminationHumansNatural Language ProcessingPatient SelectionConceptsNegation scope detectionCohort queriesScope detectionHealth Information Technology Usability Evaluation ScaleHuman-computer collaborationValue normalizationNatural language processingMachine intelligenceDomain expertsEligibility criteria textUsability evaluationLearnability scoreF1 scoreUser interventionLanguage processingHuman intelligenceUsability scoreQueriesError correctionEngagement featuresIntelligenceDisease trialsFrequent modificationsEnhanced modulesCOVID-19 clinical trials