2022
Discovering novel drug-supplement interactions using SuppKG generated from the biomedical literature
Schutte D, Vasilakes J, Bompelli A, Zhou Y, Fiszman M, Xu H, Kilicoglu H, Bishop J, Adam T, Zhang R. Discovering novel drug-supplement interactions using SuppKG generated from the biomedical literature. Journal Of Biomedical Informatics 2022, 131: 104120. PMID: 35709900, PMCID: PMC9335448, DOI: 10.1016/j.jbi.2022.104120.Peer-Reviewed Original ResearchConceptsUnified Medical Language SystemComprehensive knowledge graphDomain terminologyKnowledge graphSemantic relationsNatural language processing technologyLanguage processing technologyNLP toolsDownstream tasksF1 scoreSemantic relationshipsDiscovery patternsPubMed abstractsLimited coverageBiomedical literatureProcessing technologyLanguage systemSemRepDietary supplement informationManual reviewNovel methodologyGraphNodesDomainTask
2020
Representation of EHR data for predictive modeling: a comparison between UMLS and other terminologies
Rasmy L, Tiryaki F, Zhou Y, Xiang Y, Tao C, Xu H, Zhi D. Representation of EHR data for predictive modeling: a comparison between UMLS and other terminologies. Journal Of The American Medical Informatics Association 2020, 27: 1593-1599. PMID: 32930711, PMCID: PMC7647355, DOI: 10.1093/jamia/ocaa180.Peer-Reviewed Original ResearchConceptsUnified Medical Language SystemRecurrent neural networkNeural networkPrediction performanceLogistic regressionPredictive modelingDeep learningData aggregationElectronic health record dataMachine learningRisk predictionBetter prediction performanceDengue hemorrhagic feverHealth record dataEHR dataCancer predictionLarge vocabularyDifferent tasksPredictive modelHeart failureDiabetes patientsPancreatic cancerClinical dataHemorrhagic feverICD-9
2007
A study of abbreviations in clinical notes.
Xu H, Stetson P, Friedman C. A study of abbreviations in clinical notes. AMIA Annual Symposium Proceedings 2007, 2007: 821-5. PMID: 18693951, PMCID: PMC2655910.Peer-Reviewed Original ResearchConceptsUnified Medical Language SystemNatural language processing systemsLanguage processing systemNarrative clinical notesDetection methodClinical notesDifferent knowledge sourcesSense inventoryDomain expertsNLP systemsCorrect sensesDecision supportText corporaKnowledge sourcesError detectionProcessing systemBiomedical literatureStudy of abbreviationsLanguage systemPatient informationAmbiguity rateBetter detection methodsDatabaseAnnotationAbbreviationsUsing contextual and lexical features to restructure and validate the classification of biomedical concepts
Fan J, Xu H, Friedman C. Using contextual and lexical features to restructure and validate the classification of biomedical concepts. BMC Bioinformatics 2007, 8: 264. PMID: 17650333, PMCID: PMC2014782, DOI: 10.1186/1471-2105-8-264.Peer-Reviewed Original ResearchConceptsUnified Medical Language SystemString-based approachesMean reciprocal rankReciprocal rankNatural language processingError rateContextual featuresLexical featuresIntegration of dataLow error rateReasoning systemAutomatic approachComplementary classifiersLanguage processingClassification approachBiomedical terminologiesClassification errorOntological conceptsBiomedical conceptsOntological termsSyntactic approachLanguage systemClassifierSyntactic featuresOntology