2017
Markers of Successful Extubation in Extremely Preterm Infants, and Morbidity After Failed Extubation
Chawla S, Natarajan G, Shankaran S, Carper B, Brion L, Keszler M, Carlo W, Ambalavanan N, Gantz M, Das A, Finer N, Goldberg R, Cotten C, Higgins R, Network E, Jobe A, Caplan M, Polin R, Laptook R, Oh W, Hensman A, Gingras D, Barnett S, Lillie S, Francis K, Andrews D, Angela K, Walsh M, Fanaroff A, Newman N, Siner B, Schibler K, Donovan E, Narendran V, Bridges K, Alexander B, Grisby C, Mersmann M, Mincey H, Hessling J, Goldberg R, Auten K, Fisher K, Foy K, Siaw G, Stoll B, Buchter S, Piazza A, Carlton D, Hale E, Archer S, Poindexter B, Lemons J, Hamer F, Herron D, Miller L, Wilson L, Berberich M, Blaisdell C, Gail D, Kiley J, Poole W, Cunningham M, Hastings B, Irene A, Auman J, Huitema C, Pickett J, Wallace D, Zaterka-Baxter K, Van Meurs K, Stevenson D, Ball M, Proud M, Frantz I, Fiascone J, Furey A, MacKinnon B, Nylen E, Collins M, Cosby S, Phillips V, Rasmussen M, Wozniak P, Rich W, Arnell K, Bridge R, Demetrio C, Bell E, Widness J, Klein J, Johnson K, Duara S, Everett-Thomas R, Watterberg K, Ohls R, Rohr J, Lacy C, Phelps D, Laroia N, Reubens L, Burnell E, Sánchez P, Rosenfeld C, Salhab W, Allen J, Guzman A, Hensley G, Lepps M, Martin M, Miller N, Solis A, Vasil D, Wilder K, Kennedy K, Tyson J, Morris B, Harris B, Lis A, Martin S, McDavid G, Tate P, Wright S, Yoder B, Faix R, Burnett J, Jensen J, Osborne K, Spencer C, Weaver-Lewis K, O'Shea T, Peters N, Sood B, Bara R, Billian E, Johnson M, Ehrenkranz R, Jacobs H, Bhandari V, Cervone P, Gettner P, Konstantino M, Poulsen J, Taft J. Markers of Successful Extubation in Extremely Preterm Infants, and Morbidity After Failed Extubation. The Journal Of Pediatrics 2017, 189: 113-119.e2. PMID: 28600154, PMCID: PMC5657557, DOI: 10.1016/j.jpeds.2017.04.050.Peer-Reviewed Original ResearchConceptsGestational age statusHours of ageSuccessful extubationExtubation failureApgar scoreBronchopulmonary dysplasiaPreterm infantsContinuous positive airway pressure groupOxygenation Randomized TrialExtremely preterm infantsDay of extubationAge statusHigher adjusted ratesEarly surfactantExtubation criteriaExtubation statusFailed ExtubationNeonatal morbidityPreterm neonatesVentilatory strategiesElective extubationWeeks' gestationRandomized trialsAdjusted ratesExtubationPatterns of Oxygenation, Mortality, and Growth Status in the Surfactant Positive Pressure and Oxygen Trial Cohort
Di Fiore J, Martin R, Li H, Morris N, Carlo W, Finer N, Walsh M, Health A, Jobe A, Caplan M, Polin R, Laptook R, Oh W, Hensman A, Gingras D, Barnett S, Lillie S, Francis K, Andrews D, Angela K, Fanaroff A, Newman N, Siner B, Zadell A, Schibler K, Donovan E, Bridges K, Alexander B, Grisby C, Mersmann M, Mincey H, Hessling J, Goldberg R, Cotten C, Wallace D, Freedman S, Auten K, Fisher K, Foy K, Stoll B, Piazza A, Buchter S, Carlton D, Hutchinson A, Hale E, Higgins R, Archer S, Poindexter B, Lemons J, Hamer F, Herron D, Miller L, Wilson L, Berberich M, Blaisdell C, Gail D, Kiley J, Gantz M, Das A, Crawford M, Hastings B, Irene A, Auman J, Huitema C, Pickett J, Wallace D, Zaterka-Baxter K, Van Meurs K, Stevenson D, Ball M, Proud M, Frantz I, Fiascone J, Furey A, MacKinnon B, Nylen E, Ambalavanan N, Collins M, Cosby S, Phillips V, Rasmussen M, Wozniak P, Rich W, Arnell K, Bridge R, Demetrio C, Bell E, Widness J, Klein J, Johnson K, Duara S, Everett-Thomas R, Watterberg K, Ohls R, Rohr J, Lacy C, Phelps D, Laroia N, Markowitz G, Reubens L, Burnell E, Sánchez P, Rosenfeld C, Salhab W, Allen J, Grau L, Guzman A, Hensley G, Lepps M, Martin M, Miller N, Solis A, Vasil D, Wilder K, Kennedy K, Tyson J, Morris B, Harris B, Lis A, Martin S, McDavid G, Tate P, Wright S, Yoder B, Faix R, Burnett J, Jensen J, Osborne K, Spencer C, Weaver-Lewis K, O'Shea T, Peters N, Shankaran S, Sood B, Bara R, Billian E, Johnson M, Ehrenkranz R, Narendran V, Bhandari V, Jacobs H, Cervone P, Gettner P, Konstantino M, Poulsen J, Taft J. Patterns of Oxygenation, Mortality, and Growth Status in the Surfactant Positive Pressure and Oxygen Trial Cohort. The Journal Of Pediatrics 2017, 186: 49-56.e1. PMID: 28279433, PMCID: PMC5484739, DOI: 10.1016/j.jpeds.2017.01.057.Peer-Reviewed Original ResearchConceptsDays of lifeIntermittent hypoxemia eventsOxygen saturation targetsOxygen saturationHypoxemia eventsSaturation targetsGestational ageHigher oxygen saturation targetsExtremely preterm infantsMedian oxygen saturationWeeks of gestationLowest oxygen saturationPositive pressureOxygen saturation levelsPatterns of oxygenationIntermittent hypoxemiaPreterm infantsTrial cohortSupplemental oxygenLowest quartileHigh incidenceTarget infantsInfantsSGASurvival
2001
Defining the specific physiological requirements for c-Myc in T cell development
Douglas N, Jacobs H, Bothwell A, Hayday A. Defining the specific physiological requirements for c-Myc in T cell development. Nature Immunology 2001, 2: 307-315. PMID: 11276201, DOI: 10.1038/86308.Peer-Reviewed Original ResearchConceptsDevelopmental gene expressionC-MycSpecific physiological requirementsMYC family membersT cell developmentAbstractc-MycN-myc expressionGene expressionDeregulated expressionCell developmentCell growthPhysiological requirementsAge-dependent mannerThymocyte maturationDN stageNormal lymphocytesExpressionNonredundant contributionsDistinct patternsFamily membersCellsLymphomagenesisMaturationLymphocytes
2000
HNF3β and GATA-4 transactivate the liver-enriched homeobox gene, Hex
Denson L, McClure M, Bogue C, Karpen S, Jacobs H. HNF3β and GATA-4 transactivate the liver-enriched homeobox gene, Hex. Gene 2000, 246: 311-320. PMID: 10767553, DOI: 10.1016/s0378-1119(00)00082-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineCOS CellsDNADNA-Binding ProteinsGATA4 Transcription FactorGenes, HomeoboxHepatocyte Nuclear Factor 3-betaHomeodomain ProteinsHumansLiverLuciferasesMaleMiceMolecular Sequence DataNuclear ProteinsPlasmidsPromoter Regions, GeneticProtein BindingRatsRats, Sprague-DawleyRecombinant Fusion ProteinsSequence Analysis, DNASp1 Transcription FactorSp3 Transcription FactorTranscription FactorsTranscriptional ActivationTransfectionTumor Cells, Cultured
1997
Repeated Doses of the Perfluorocarbon FC-100 Improve Lung Function of Preterm Lambs
Moya F, Llanos A, Ríos A, Riquelme R, Moraga F, Rubio L, Salvo H, Jacobs H. Repeated Doses of the Perfluorocarbon FC-100 Improve Lung Function of Preterm Lambs. Pediatric Research 1997, 42: 893-898. PMID: 9396575, DOI: 10.1203/00006450-199712000-00028.Peer-Reviewed Original ResearchConceptsLung functionPreterm lambsInitial doseIntratracheal administrationFC-100Administration of ExosurfSurfactant-deficient animalsSynthetic surfactant ExosurfArterial blood pressureDynamic lung compliancePreterm neonatesBlood pressureLung complianceSingle doseArterial PO2Arterial PCO2Surfactant deficiencyHeart rateAdditional doseExosurfStudy periodDoseAdministrationDosesSimilar changes
1996
Expression of Hoxb genes in the developing mouse foregut and lung.
Bogue CW, Lou LJ, Vasavada H, Wilson CM, Jacobs HC. Expression of Hoxb genes in the developing mouse foregut and lung. American Journal Of Respiratory Cell And Molecular Biology 1996, 15: 163-171. PMID: 8703472, DOI: 10.1165/ajrcmb.15.2.8703472.Peer-Reviewed Original Research
1989
Pulmonary function tests and fluid balance in neonates with chronic lung disease during dexamethasone treatment.
Gladstone I, Ehrenkranz R, Jacobs H. Pulmonary function tests and fluid balance in neonates with chronic lung disease during dexamethasone treatment. Pediatrics 1989, 84: 1072-6. PMID: 2587137, DOI: 10.1542/peds.84.6.1072.Peer-Reviewed Original ResearchConceptsPulmonary function testsChronic lung diseaseFunction testsLung diseaseFluid balanceTotal pulmonary resistanceHours of treatmentFirst dosePulmonary resistanceUrine outputGestational ageRespiratory statusBirth weightExpiratory timeDexamethasone treatmentClinical teamDynamic complianceFluid shiftsInfantsDexamethasoneExtubationSignificant differencesTreatmentDiseaseHours
1984
Lack of correlation of severity of lung disease with the phosphatidylcholine concentration in fetal lung fluid from premature lambs at 133-136 days gestational age.
Jobe A, Jacobs H, Ikegami M. Lack of correlation of severity of lung disease with the phosphatidylcholine concentration in fetal lung fluid from premature lambs at 133-136 days gestational age. Journal Of Developmental Physiology 1984, 6: 417-21. PMID: 6568247.Peer-Reviewed Original ResearchConceptsFetal lung fluidPeak inspiratory pressureDays gestational ageLung diseaseLung fluidPremature lambsGestational ageInspiratory pressureConcentration of phosphatidylcholinePhosphatidylcholine concentrationNarrow gestational age rangePhosphatidylcholine pool sizesGestational age rangeTime of deliveryLung compliance valuesMechanical ventilationAlveolar washTotal phosphatidylcholineDiseaseAge rangeSeverityLack of correlationAgeLambsCompliance values