2024
Single-Cell Analysis Reveals a Subset of High IL-12p40-Secreting Dendritic Cells within Mouse Bone Marrow-Derived Macrophages Differentiated with M-CSF.
Bridges K, Pizzurro G, Khunte M, Chen M, Salvador Rocha E, Alexander A, Bass V, Kellman L, Baskaran J, Miller-Jensen K. Single-Cell Analysis Reveals a Subset of High IL-12p40-Secreting Dendritic Cells within Mouse Bone Marrow-Derived Macrophages Differentiated with M-CSF. The Journal Of Immunology 2024, 212: 1357-1365. PMID: 38416039, DOI: 10.4049/jimmunol.2300431.Peer-Reviewed Original ResearchBone marrow-derived macrophagesDendritic cellsCell-to-cell heterogeneitySingle-cell RNA sequencing dataRNA sequencing dataSingle-cell analysisIL-12p40Sequence dataExpression of IL12BInnate immune functionProduction of IL-12Bone marrow-derived macrophage culturesMurine bone marrow-derived macrophagesSurface marker expressionAcute inflammatory responseMarrow-derived macrophagesGene encoding IL-12p40Secretion assayIL12B expressionReporter miceDC lineageIL-12GenesProinflammatory cytokinesM-CSF
2023
Reframing macrophage diversity with network motifs
Pizzurro G, Miller-Jensen K. Reframing macrophage diversity with network motifs. Trends In Immunology 2023, 44: 965-970. PMID: 37949786, PMCID: PMC11057955, DOI: 10.1016/j.it.2023.10.009.Commentaries, Editorials and LettersConceptsNetwork motifsDistinct biological functionsSystems biology conceptsMacrophage stateMacrophage responseBiological functionsMacrophage diversityExtracellular networkMacrophage activationDisease contextsMotifLocal molecular interactionsMolecular interactionsFunctional modulesBiology conceptsDiversityActivationTissueIntracellularResponseCombinatorial Immunotherapy with Agonistic CD40 Activates Dendritic Cells to Express IL12 and Overcomes PD-1 Resistance.
Krykbaeva I, Bridges K, Damsky W, Pizzurro G, Alexander A, McGeary M, Park K, Muthusamy V, Eyles J, Luheshi N, Turner N, Weiss S, Olino K, Kaech S, Kluger H, Miller-Jensen K, Bosenberg M. Combinatorial Immunotherapy with Agonistic CD40 Activates Dendritic Cells to Express IL12 and Overcomes PD-1 Resistance. Cancer Immunology Research 2023, 11: 1332-1350. PMID: 37478171, DOI: 10.1158/2326-6066.cir-22-0699.Peer-Reviewed Original ResearchConceptsPD-1 resistanceDendritic cellsTumor regressionAnti-PD-1 resistanceActivates Dendritic CellsCytokine secretion profilingSystemic cytokine profileTriple therapy combinationInnate immune activationAdaptive immune responsesComplete tumor regressionMajority of miceSignificant clinical challengeMouse melanoma modelT cell activationAgonistic CD40Checkpoint inhibitorsDC subsetsTriple therapyCytokine profileImmune activationCombinatorial immunotherapyTherapy combinationsT cellsClinical challengeFunctionally and Metabolically Divergent Melanoma-Associated Macrophages Originate from Common Bone-Marrow Precursors
Pizzurro G, Bridges K, Jiang X, Vidyarthi A, Miller-Jensen K, Colegio O. Functionally and Metabolically Divergent Melanoma-Associated Macrophages Originate from Common Bone-Marrow Precursors. Cancers 2023, 15: 3330. PMID: 37444440, PMCID: PMC10341323, DOI: 10.3390/cancers15133330.Peer-Reviewed Original ResearchGene Set Enrichment AnalysisBone marrow precursorsTissue-specific nichesTumor-associated macrophagesMelanoma tumor microenvironmentTranscriptomic analysisRNA sequencingTumor microenvironmentEnrichment analysisOxidative phosphorylationProtein secretionTemporal divergenceCanonical markersPolyamine metabolismTAM subsetsLike phenotypeSkin-resident macrophagesMacrophage phenotypeMonocytic precursorsOntogenyTumor progressionDepth characterizationPhenotypeMacrophage subsetsTAM subpopulations
2022
Self-assembly of mesoscale collagen architectures and applications in 3D cell migration
Liu C, Nguyen R, Pizzurro G, Zhang X, Gong X, Martinez A, Mak M. Self-assembly of mesoscale collagen architectures and applications in 3D cell migration. Acta Biomaterialia 2022, 155: 167-181. PMID: 36371004, PMCID: PMC9805527, DOI: 10.1016/j.actbio.2022.11.011.Peer-Reviewed Original ResearchConceptsNano-scale topographyCollagen-based scaffoldsBiomimetic scaffoldsMicroscale topographyMechanical agitationCollagen networkGelation processCollagen scaffoldsMatrix structureCollagen architectureMesoscale featuresCell behaviorScaffoldsLarge scaleTopographySoftnessLocal propertiesExtracellular matrix structureBehaviorECM architectureMicroCurrent methodsProcessMethod
2021
3D Model of the Early Melanoma Microenvironment Captures Macrophage Transition into a Tumor-Promoting Phenotype
Pizzurro GA, Liu C, Bridges K, Alexander AF, Huang A, Baskaran JP, Ramseier J, Bosenberg MW, Mak M, Miller-Jensen K. 3D Model of the Early Melanoma Microenvironment Captures Macrophage Transition into a Tumor-Promoting Phenotype. Cancers 2021, 13: 4579. PMID: 34572807, PMCID: PMC8471848, DOI: 10.3390/cancers13184579.Peer-Reviewed Original ResearchTumor-associated macrophagesMelanoma tumor microenvironmentTumor microenvironmentTumor-promoting phenotypeAnti-tumor activityImmunosuppressive stateDisease progressionCo-culture systemImmune responseImmune activitySecretion profileDirect cell-cell interactionsMelanoma tumorsStromal componentsMacrophage transitionStromal cellsTumor cellsMelanoma cellsTopical arginase inhibition decreases growth of cutaneous squamous cell carcinoma
Mittal A, Wang M, Vidyarthi A, Yanez D, Pizzurro G, Thakral D, Tracy E, Colegio OR. Topical arginase inhibition decreases growth of cutaneous squamous cell carcinoma. Scientific Reports 2021, 11: 10731. PMID: 34031449, PMCID: PMC8144401, DOI: 10.1038/s41598-021-90200-y.Peer-Reviewed Original ResearchConceptsCutaneous squamous cell carcinomaSquamous cell carcinomaArginase inhibitionB6 miceCell carcinomaAnti-PD-1 therapeutic efficacyTumor growthArginase inhibitorAnti-PD-1 therapyPD-1 expressionAppropriate tumor modelsCSCC cell linesPre-clinical modelsTumor growth inhibitionNOHA administrationSignificant morbidityC57BL/6 miceImmune microenvironmentImmunocompetent miceCSCC tumorsDeficient miceT cellsMacrophage expressionTherapeutic modalitiesTherapeutic efficacy
2015
Cytokine-enhanced maturation and migration to the lymph nodes of a human dying melanoma cell-loaded dendritic cell vaccine.
Pizzurro GA, Tapia IJ, Sganga L, Podhajcer OL, Mordoh J, Barrio MM. Cytokine-enhanced maturation and migration to the lymph nodes of a human dying melanoma cell-loaded dendritic cell vaccine. Cancer Immunol Immunother 2015, 64: 1393-406. PMID: 26197849, DOI: 10.1007/s00262-015-1743-z.Peer-Reviewed Original ResearchDendritic cell-based vaccine efficacy: aiming for hot spots.
Pizzurro GA, Barrio MM. Dendritic cell-based vaccine efficacy: aiming for hot spots. Front Immunol 2015, 6: 91. PMID: 25784913, DOI: 10.3389/fimmu.2015.00091.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2013
High lipid content of irradiated human melanoma cells does not affect cytokine-matured dendritic cell function.
Pizzurro GA, Madorsky Rowdo FP, Pujol-Lereis LM, Quesada-Allué LA, Copati AM, Roberti MP, Teillaud JL, Levy EM, Barrio MM, Mordoh J. High lipid content of irradiated human melanoma cells does not affect cytokine-matured dendritic cell function. Cancer Immunol Immunother 2013, 62: 3-15. PMID: 22722447, DOI: 10.1007/s00262-012-1295-4.Peer-Reviewed Original Research
2012
Human macrophages and dendritic cells can equally present MART-1 antigen to CD8(+) T cells after phagocytosis of gamma-irradiated melanoma cells.
Barrio MM, Abes R, Colombo M, Pizzurro G, Boix C, Roberti MP, Gélizé E, Rodriguez-Zubieta M, Mordoh J, Teillaud JL. Human macrophages and dendritic cells can equally present MART-1 antigen to CD8(+) T cells after phagocytosis of gamma-irradiated melanoma cells. PLoS One 2012, 7: e40311. PMID: 22768350, DOI: 10.1371/journal.pone.0040311.Peer-Reviewed Original Research