2024
Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer
Robles-Oteíza C, Hastings K, Choi J, Sirois I, Ravi A, Expósito F, de Miguel F, Knight J, López-Giráldez F, Choi H, Socci N, Merghoub T, Awad M, Getz G, Gainor J, Hellmann M, Caron É, Kaech S, Politi K. Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer. Journal Of Experimental Medicine 2024, 222: e20231106. PMID: 39585348, DOI: 10.1084/jem.20231106.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsNon-small cell lung cancerAcquired resistanceCheckpoint inhibitorsResistant tumorsPatients treated with anti-PD-1/PD-L1 therapyAnti-PD-1/PD-L1 therapyLung cancerResistance to immune checkpoint inhibitorsAssociated with decreased progression-free survivalHypoxia activated pro-drugsTargeting hypoxic tumor regionsTreat non-small cell lung cancerAnti-CTLA-4Anti-PD-1Immune checkpoint inhibitionTumor metabolic featuresProgression-free survivalCell lung cancerResistant cancer cellsHypoxic tumor regionsMHC-II levelsRegions of hypoxiaKnock-outCheckpoint inhibition
2023
LRRC23 truncation impairs radial spoke 3 head assembly and sperm motility underlying male infertility
Hwang J, Chai P, Nawaz S, Choi J, Lopez-Giraldez F, Hussain S, Bilguvar K, Mane S, Lifton R, Ahmad W, Zhang K, Chung J. LRRC23 truncation impairs radial spoke 3 head assembly and sperm motility underlying male infertility. ELife 2023, 12: rp90095. PMID: 38091523, PMCID: PMC10721216, DOI: 10.7554/elife.90095.Peer-Reviewed Original ResearchMicroRNA-1 protects the endothelium in acute lung injury
Korde A, Haslip M, Pednekar P, Khan A, Chioccioli M, Mehta S, Lopez-Giraldez F, Bermejo S, Rojas M, Dela Cruz C, Matthay M, Pober J, Pierce R, Takyar S. MicroRNA-1 protects the endothelium in acute lung injury. JCI Insight 2023, 8: e164816. PMID: 37737266, PMCID: PMC10561733, DOI: 10.1172/jci.insight.164816.Peer-Reviewed Original ResearchConceptsAcute respiratory distress syndromeAcute lung injuryVascular endothelial growth factorAngiopoietin-2Lung injuryAcute injuryMiR-1MicroRNA-1Endothelial cell-specific overexpressionSevere endothelial dysfunctionRespiratory distress syndromeSurvival of miceIntrinsic protective effectContext of injuryCell-specific overexpressionEndothelial growth factorFamily member 3Pneumonia cohortMiR-1 targetsEndothelial dysfunctionDistress syndromeBarrier dysfunctionCapillary leakProtective effectSevere formMultiomic analyses implicate a neurodevelopmental program in the pathogenesis of cerebral arachnoid cysts
Kundishora A, Allington G, McGee S, Mekbib K, Gainullin V, Timberlake A, Nelson-Williams C, Kiziltug E, Smith H, Ocken J, Shohfi J, Allocco A, Duy P, Elsamadicy A, Dong W, Zhao S, Wang Y, Qureshi H, DiLuna M, Mane S, Tikhonova I, Fu P, Castaldi C, López-Giráldez F, Knight J, Furey C, Carter B, Haider S, Moreno-De-Luca A, Alper S, Gunel M, Millan F, Lifton R, Torene R, Jin S, Kahle K. Multiomic analyses implicate a neurodevelopmental program in the pathogenesis of cerebral arachnoid cysts. Nature Medicine 2023, 29: 667-678. PMID: 36879130, DOI: 10.1038/s41591-023-02238-2.Peer-Reviewed Original ResearchConceptsArachnoid cystCerebral arachnoid cystsDe novo variantsAC pathogenesisDevelopmental brain lesionsStructural brain diseaseAppropriate clinical contextPatients' medical recordsDamaging de novo variantsMedical recordsClinical severityBrain lesionsHealthy individualsAC subtypesBrain diseasesGenetic testingNeurodevelopmental pathologyClinical contextPathogenesisPatient phenotypesNeurodevelopmental programsNovo variantsRNA sequencing transcriptomeHuman brainCysts
2022
Mitochondrial dysfunction induces ALK5-SMAD2-mediated hypovascularization and arteriovenous malformations in mouse retinas
Zhang H, Li B, Huang Q, López-Giráldez F, Tanaka Y, Lin Q, Mehta S, Wang G, Graham M, Liu X, Park I, Eichmann A, Min W, Zhou J. Mitochondrial dysfunction induces ALK5-SMAD2-mediated hypovascularization and arteriovenous malformations in mouse retinas. Nature Communications 2022, 13: 7637. PMID: 36496409, PMCID: PMC9741628, DOI: 10.1038/s41467-022-35262-w.Peer-Reviewed Original ResearchConceptsMitochondrial dysfunctionThioredoxin 2Single-cell RNA-seq analysisRNA-seq analysisMutant miceNuclear genesMitochondrial proteinsMitochondrial localizationHuman retinal diseasesTranscriptional factorsGene expressionMutant retinasMitochondrial activityExtracellular matrixNovel mechanismVascular maturationArteriovenous malformationsGenetic deficiencyVessel growthSmad2Mouse retinaVascular malformationsMechanistic studiesBasement membraneRetinal vascular malformationsMacrophage IL-1β promotes arteriogenesis by autocrine STAT3- and NF-κB-mediated transcription of pro-angiogenic VEGF-A
Mantsounga CS, Lee C, Neverson J, Sharma S, Healy A, Berus JM, Parry C, Ceneri NM, López-Giráldez F, Chun HJ, Lu Q, Sellke F, Choudhary G, Morrison AR. Macrophage IL-1β promotes arteriogenesis by autocrine STAT3- and NF-κB-mediated transcription of pro-angiogenic VEGF-A. Cell Reports 2022, 38: 110309. PMID: 35108537, PMCID: PMC8865931, DOI: 10.1016/j.celrep.2022.110309.Peer-Reviewed Original ResearchConceptsPeripheral artery diseaseIL-1βPro-angiogenic VEGFNF-κBSetting of PADExperimental PAD modelInflammatory macrophage subsetsAcute limb ischemiaBlood flow recoveryIL-1β expressionNF-κB-mediated transcriptionPotent inflammatory cytokineMacrophage IL-1βAnti-angiogenic VEGFLimb ischemiaArtery diseaseConsiderable morbidityInhibition of STAT3Inflammatory cytokinesMacrophage subsetsTherapeutic angiogenesisFlow recoveryVEGFIsoform expressionAngiogenesis
2021
CCM3 Loss-Induced Lymphatic Defect Is Mediated by the Augmented VEGFR3-ERK1/2 Signaling
Qin L, Zhang H, Li B, Jiang Q, Lopez F, Min W, Zhou JH. CCM3 Loss-Induced Lymphatic Defect Is Mediated by the Augmented VEGFR3-ERK1/2 Signaling. Arteriosclerosis Thrombosis And Vascular Biology 2021, 41: 2943-2960. PMID: 34670407, PMCID: PMC8613000, DOI: 10.1161/atvbaha.121.316707.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosis Regulatory ProteinsCells, CulturedEndothelial CellsEndothelium, LymphaticFemaleGene DeletionHemangioma, Cavernous, Central Nervous SystemHyperplasiaMaleMAP Kinase Signaling SystemMice, Inbred StrainsModels, AnimalNF-kappa BTranslocation, GeneticVascular Endothelial Growth Factor Receptor-3ConceptsLymphatic ECsLymphatic defectsCerebral cavernous malformationsPan-endothelial cellsGrowth factor receptorTranscriptional levelTransport assaysLymphatic hyperplasiaCCM genesLymphatic dysfunctionNuclear translocationGenesFactor receptorVEGFR3ERK1/2Nuclear factorDeletionEC proliferationInhibition of VEGFR3Dependent mannerVascular endothelial growth factor receptorEndothelial growth factor receptorEC deletionAbnormal valve structureKPNA2Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake
Habtemichael EN, Li DT, Camporez JP, Westergaard XO, Sales CI, Liu X, López-Giráldez F, DeVries SG, Li H, Ruiz DM, Wang KY, Sayal BS, González Zapata S, Dann P, Brown SN, Hirabara S, Vatner DF, Goedeke L, Philbrick W, Shulman GI, Bogan JS. Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake. Nature Metabolism 2021, 3: 378-393. PMID: 33686286, PMCID: PMC7990718, DOI: 10.1038/s42255-021-00359-x.Peer-Reviewed Original ResearchConceptsTUG cleavageGlucose uptakeProtein degradation pathwaysGLUT4 glucose transportersCoactivator PGC-1αC-terminal cleavage productInsulin-stimulated glucose uptakeAte1 arginyltransferaseGene expressionPhysiological relevanceWhole-body energy expenditureGlucose transporterPeroxisome proliferator-activated receptorCell surfacePGC-1αProtein 1Proliferator-activated receptorDegradation pathwayEffect of insulinCleavage pathwayAdipose cellsCleavage productsPathwayCleavageEnergy expenditure
2020
Comparative Genomics within and across Bilaterians Illuminates the Evolutionary History of ALK and LTK Proto-Oncogene Origination and Diversification
Dornburg A, Wang Z, Wang J, Mo ES, López-Giráldez F, Townsend JP. Comparative Genomics within and across Bilaterians Illuminates the Evolutionary History of ALK and LTK Proto-Oncogene Origination and Diversification. Genome Biology And Evolution 2020, 13: evaa228. PMID: 33196781, PMCID: PMC7851593, DOI: 10.1093/gbe/evaa228.Peer-Reviewed Original ResearchConceptsLeukocyte tyrosine kinaseEvolutionary historyPhylogenetic analysisProtein-coding genesComparative genomic analysisEarly embryonic expressionMetazoan genomesComparative genomicsPhylogenetic contextModel organismsEmbryonic expressionModel speciesHuman genesKey genesGenomic analysisImportant genesMammal systemsFunctional convergenceTyrosine kinaseMolecular homologyGenesFunctional roleVertebratesMammal modelsHomologyMutations disrupting neuritogenesis genes confer risk for cerebral palsy
Jin SC, Lewis SA, Bakhtiari S, Zeng X, Sierant MC, Shetty S, Nordlie SM, Elie A, Corbett MA, Norton BY, van Eyk CL, Haider S, Guida BS, Magee H, Liu J, Pastore S, Vincent JB, Brunstrom-Hernandez J, Papavasileiou A, Fahey MC, Berry JG, Harper K, Zhou C, Zhang J, Li B, Zhao H, Heim J, Webber DL, Frank MSB, Xia L, Xu Y, Zhu D, Zhang B, Sheth AH, Knight JR, Castaldi C, Tikhonova IR, López-Giráldez F, Keren B, Whalen S, Buratti J, Doummar D, Cho M, Retterer K, Millan F, Wang Y, Waugh JL, Rodan L, Cohen JS, Fatemi A, Lin AE, Phillips JP, Feyma T, MacLennan SC, Vaughan S, Crompton KE, Reid SM, Reddihough DS, Shang Q, Gao C, Novak I, Badawi N, Wilson YA, McIntyre SJ, Mane SM, Wang X, Amor DJ, Zarnescu DC, Lu Q, Xing Q, Zhu C, Bilguvar K, Padilla-Lopez S, Lifton RP, Gecz J, MacLennan AH, Kruer MC. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nature Genetics 2020, 52: 1046-1056. PMID: 32989326, PMCID: PMC9148538, DOI: 10.1038/s41588-020-0695-1.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBeta CateninCerebral PalsyCyclin DCytoskeletonDrosophilaExomeExome SequencingExtracellular MatrixF-Box ProteinsFemaleFocal AdhesionsGenetic Predisposition to DiseaseGenome, HumanHumansMaleMutationNeuritesRhoB GTP-Binding ProteinRisk FactorsSequence Analysis, DNASignal TransductionTubulinTumor Suppressor ProteinsConceptsDamaging de novo mutationsCerebral palsyDe novo mutationsCerebral palsy casesRisk genesDamaging de novoNovo mutationsWhole-exome sequencingPalsy casesNeuromotor functionD levelsMonogenic etiologyCyclin D levelsNeuronal connectivityPalsyGene confer riskConfer riskRecessive variantsNeurodevelopmental disorder genesReverse genetic screenDisorder genesParent-offspring triosGenome-wide significanceGenomic factorsCytoskeleton pathwayDermal Adipocyte Lipolysis and Myofibroblast Conversion Are Required for Efficient Skin Repair
Shook BA, Wasko RR, Mano O, Rutenberg-Schoenberg M, Rudolph MC, Zirak B, Rivera-Gonzalez GC, López-Giráldez F, Zarini S, Rezza A, Clark DA, Rendl M, Rosenblum MD, Gerstein MB, Horsley V. Dermal Adipocyte Lipolysis and Myofibroblast Conversion Are Required for Efficient Skin Repair. Cell Stem Cell 2020, 26: 880-895.e6. PMID: 32302523, PMCID: PMC7853423, DOI: 10.1016/j.stem.2020.03.013.Peer-Reviewed Original ResearchConceptsSingle-cell RNA sequencingDermal adipocytesGenetic lineage tracingMammary gland biologyMature adipocytesGenetic mouse studiesAdipocyte-derived lipidsGenetic experimentsTissue homeostasisRNA sequencingLineage tracingECM-producing myofibroblastsDefective wound healingAdipocyte lipolysisMyofibroblast conversionAdipocyte functionEssential roleLipid releaseAdipocytesFatty acidsMacrophage inflammationInflammatory diseasesMultiple aspectsSkin repairMouse studiesTumor progression and chromatin landscape of lung cancer are regulated by the lineage factor GATA6
Arnal-Estapé A, Cai WL, Albert AE, Zhao M, Stevens LE, López-Giráldez F, Patel KD, Tyagi S, Schmitt EM, Westbrook TF, Nguyen DX. Tumor progression and chromatin landscape of lung cancer are regulated by the lineage factor GATA6. Oncogene 2020, 39: 3726-3737. PMID: 32157212, PMCID: PMC7190573, DOI: 10.1038/s41388-020-1246-z.Peer-Reviewed Original ResearchConceptsChromatin landscapeTranscription factorsBone morphogenetic protein (BMP) signalingDiverse transcriptional programsAlters chromatin accessibilityMultiple genomic lociMorphogenetic protein signalingDistal enhancer elementsSelective transcription factorsEpithelial cell typesSurfactant protein CChromatin accessibilityGenomic lociTranscriptional programsLung adenocarcinoma progressionTumor progressionEpigenetic mechanismsProtein signalingBiological functionsLUAD progressionLUAD cellsEnhancer elementsLineage dependencyTumor suppressionLung cancer cells
2019
PD-1H (VISTA)–mediated suppression of autoimmunity in systemic and cutaneous lupus erythematosus
Han X, Vesely MD, Yang W, Sanmamed MF, Badri T, Alawa J, López-Giráldez F, Gaule P, Lee SW, Zhang JP, Nie X, Nassar A, Boto A, Flies DB, Zheng L, Kim TK, Moeckel GW, McNiff JM, Chen L. PD-1H (VISTA)–mediated suppression of autoimmunity in systemic and cutaneous lupus erythematosus. Science Translational Medicine 2019, 11 PMID: 31826980, DOI: 10.1126/scitranslmed.aax1159.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArthritisAutoantibodiesAutoimmunityDendritic CellsHumansInflammationInterferon Type ILupus Erythematosus, CutaneousLupus Erythematosus, SystemicMembrane ProteinsMice, Inbred BALB CMice, Inbred MRL lprMyeloid CellsNeutrophilsReceptors, Antigen, T-CellSignal TransductionTerpenesUp-RegulationConceptsPlasmacytoid dendritic cellsDiscoid lupus erythematosusSystemic lupus erythematosusCutaneous lupus lesionsPD-1HLupus erythematosusLupus lesionsAutoimmune diseasesKO miceT cellsMyeloid cellsHuman systemic lupus erythematosusBALB/c backgroundCutaneous lupus erythematosusInappropriate immune responseProgression of lupusSystemic autoimmune diseaseImmune cell expansionSuppression of autoimmunityAgonistic monoclonal antibodyDeath-1 homologCutaneous lupusProinflammatory neutrophilsDendritic cellsDLE lesionsProgenitor-derived human endothelial cells evade alloimmunity by CRISPR/Cas9-mediated complete ablation of MHC expression
Merola J, Reschke M, Pierce RW, Qin L, Spindler S, Baltazar T, Manes TD, Lopez-Giraldez F, Li G, Bracaglia LG, Xie C, Kirkiles-Smith N, Saltzman WM, Tietjen GT, Tellides G, Pober JS. Progenitor-derived human endothelial cells evade alloimmunity by CRISPR/Cas9-mediated complete ablation of MHC expression. JCI Insight 2019, 4 PMID: 31527312, PMCID: PMC6824302, DOI: 10.1172/jci.insight.129739.Peer-Reviewed Original ResearchMeSH KeywordsAllograftsAnimalsBeta 2-MicroglobulinCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCell DifferentiationCells, CulturedCRISPR-Cas SystemsDisease Models, AnimalEndothelial CellsEndothelial Progenitor CellsFemaleFetal BloodGene Knockout TechniquesGraft RejectionHealthy VolunteersHumansIsoantibodiesKiller Cells, NaturalLymphocyte ActivationMiceMicrovesselsNuclear ProteinsOrgan TransplantationPrimary Cell CultureTissue EngineeringTrans-ActivatorsConceptsDonor-specific antibodiesClass II transactivatorEndothelial cellsMHC expressionAllogeneic natural killer (NK) cellsT effector memory cellsEffector memory T cellsClass IClass II major histocompatibility complex moleculesEffector memory cellsMHC molecule expressionMemory T cellsNatural killer cellsAlloreactive cytotoxic T lymphocytesAllogeneic endothelial cellsMajor histocompatibility complex moleculesCytotoxic T lymphocytesClass I MHC moleculesHistocompatibility complex moleculesI MHC moleculesAllogeneic CD4Donor leukocytesHuman endothelial cellsGraft perfusionKiller cellsAdult bone marrow progenitors become decidual cells and contribute to embryo implantation and pregnancy
Tal R, Shaikh S, Pallavi P, Tal A, López-Giráldez F, Lyu F, Fang YY, Chinchanikar S, Liu Y, Kliman HJ, Alderman M, Pluchino N, Kayani J, Mamillapalli R, Krause DS, Taylor HS. Adult bone marrow progenitors become decidual cells and contribute to embryo implantation and pregnancy. PLOS Biology 2019, 17: e3000421. PMID: 31513564, PMCID: PMC6742226, DOI: 10.1371/journal.pbio.3000421.Peer-Reviewed Original ResearchConceptsBM transplantsDecidual cellsPregnancy lossMesenchymal stem cellsAdult bone marrow progenitorsDecidualization-related genesBone marrow progenitorsAdult bone marrowWT donorsPhysiologic contributionSuccessful pregnancyBMDC recruitmentStromal expansionImmune cellsEndometrial cellsDeficient miceUterine expressionUterine tissueDecidual stromaPregnancyBone marrowNonhematopoietic cellsBMDCsHemochorial placentaMarrow progenitors
2018
Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair
Shook BA, Wasko RR, Rivera-Gonzalez GC, Salazar-Gatzimas E, López-Giráldez F, Dash BC, Muñoz-Rojas AR, Aultman KD, Zwick RK, Lei V, Arbiser JL, Miller-Jensen K, Clark DA, Hsia HC, Horsley V. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 2018, 362 PMID: 30467144, PMCID: PMC6684198, DOI: 10.1126/science.aar2971.Peer-Reviewed Original ResearchConceptsDifferential gene expressionAdipocyte precursorsExtracellular matrix moleculesGene expressionTransplantation assaysMatrix moleculesFactor C.Factor 1Insulin-like growth factor-1Cell populationsTissue resilienceDistinct subpopulationsGrowth factor-1Profibrotic cellsTissue repairMultiple mouse modelsECM depositionSkin repairTissue dysfunctionProliferationMouse modelMyofibroblastsWoundingMacrophagesRepairIn utero nanoparticle delivery for site-specific genome editing
Ricciardi AS, Bahal R, Farrelly JS, Quijano E, Bianchi AH, Luks VL, Putman R, López-Giráldez F, Coşkun S, Song E, Liu Y, Hsieh WC, Ly DH, Stitelman DH, Glazer PM, Saltzman WM. In utero nanoparticle delivery for site-specific genome editing. Nature Communications 2018, 9: 2481. PMID: 29946143, PMCID: PMC6018676, DOI: 10.1038/s41467-018-04894-2.Peer-Reviewed Original ResearchConceptsSite-specific genome editingReversal of splenomegalyPeptide nucleic acidIntra-amniotic administrationBlood hemoglobin levelsMonogenic disordersNanoparticle deliveryPolymeric nanoparticlesPostnatal elevationGestational ageHemoglobin levelsImproved survivalPediatric morbidityDisease improvementHuman β-thalassemiaReticulocyte countNormal organ developmentMouse modelNormal rangeEarly interventionGenome editingOff-target mutationsPostnatal growthGene editingVersatile methodInterferon-γ converts human microvascular pericytes into negative regulators of alloimmunity through induction of indoleamine 2,3-dioxygenase 1
Liu R, Merola J, Manes TD, Qin L, Tietjen GT, López-Giráldez F, Broecker V, Fang C, Xie C, Chen PM, Kirkiles-Smith NC, Jane-Wit D, Pober JS. Interferon-γ converts human microvascular pericytes into negative regulators of alloimmunity through induction of indoleamine 2,3-dioxygenase 1. JCI Insight 2018, 3: e97881. PMID: 29515027, PMCID: PMC5922286, DOI: 10.1172/jci.insight.97881.Peer-Reviewed Original ResearchMeSH KeywordsAllograftsAnimalsAntigen PresentationCell CommunicationCells, CulturedDisease Models, AnimalEndothelial CellsEndothelium, VascularFemaleGraft RejectionHealthy VolunteersHuman Umbilical Vein Endothelial CellsHumansIndoleamine-Pyrrole 2,3,-DioxygenaseInterferon-gammaIsoantigensMice, SCIDMicrovesselsPericytesPrimary Cell CultureRNA, Small InterferingSkinSkin TransplantationT-Lymphocytes, CytotoxicTransplantation ChimeraTransplantation, HomologousTryptophanConceptsInduction of indoleamineHuman pericytesEndothelial cellsAllograft rejectionTryptophan depletionT cellsAcute T cell-mediated rejectionT cell-mediated rejectionEffector memory T cellsDioxygenase 1Early acute rejectionCell-mediated rejectionSkin allograft rejectionAlloreactive T cellsHuman renal allograftsMemory T cellsRole of ECsContribution of pericytesAcute rejectionRenal allograftsImmunoregulatory effectsImmunosuppressive propertiesHuman allograftsMouse modelMicrovascular pericytes
2017
Identification of Intrinsic Axon Growth Modulators for Intact CNS Neurons after Injury
Fink KL, López-Giráldez F, Kim IJ, Strittmatter SM, Cafferty WB. Identification of Intrinsic Axon Growth Modulators for Intact CNS Neurons after Injury. Cell Reports 2017, 18: 2687-2701. PMID: 28297672, PMCID: PMC5389739, DOI: 10.1016/j.celrep.2017.02.058.Peer-Reviewed Original ResearchConceptsSpinal cord injuryCentral nervous systemFunctional recoveryIntact neuronsAdult mammalian central nervous systemPartial spinal cord injuryInjury-induced sproutingUnilateral brainstem lesionsGreater functional recoverySpontaneous functional recoveryCorticospinal motor neuronsCorticospinal tract axonsMammalian central nervous systemWild-type miceNew synapse formationGrowth modulatorsAdjacent injuryBrainstem lesionsCord injuryFunctional deficitsIntact circuitryCNS neuronsMotor neuronsCircuit plasticityNervous system
2016
In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery
Bahal R, Ali McNeer N, Quijano E, Liu Y, Sulkowski P, Turchick A, Lu YC, Bhunia DC, Manna A, Greiner DL, Brehm MA, Cheng CJ, López-Giráldez F, Ricciardi A, Beloor J, Krause DS, Kumar P, Gallagher PG, Braddock DT, Mark Saltzman W, Ly DH, Glazer PM. In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery. Nature Communications 2016, 7: 13304. PMID: 27782131, PMCID: PMC5095181, DOI: 10.1038/ncomms13304.Peer-Reviewed Original ResearchConceptsNanoparticle deliveryGene correctionReversal of splenomegalyPeptide nucleic acidLow off-target effectsVivo correctionGenome editingOff-target effectsGene editingHaematopoietic stem cellsNucleic acidsDonor DNAStem cellsΓPNAΒ-thalassaemiaNanoparticlesDeliveryEditingSCF treatmentTriplex formation