2024
Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer
Robles-Oteíza C, Hastings K, Choi J, Sirois I, Ravi A, Expósito F, de Miguel F, Knight J, López-Giráldez F, Choi H, Socci N, Merghoub T, Awad M, Getz G, Gainor J, Hellmann M, Caron É, Kaech S, Politi K. Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer. Journal Of Experimental Medicine 2024, 222: e20231106. PMID: 39585348, DOI: 10.1084/jem.20231106.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsNon-small cell lung cancerAcquired resistanceCheckpoint inhibitorsResistant tumorsPatients treated with anti-PD-1/PD-L1 therapyAnti-PD-1/PD-L1 therapyLung cancerResistance to immune checkpoint inhibitorsAssociated with decreased progression-free survivalHypoxia activated pro-drugsTargeting hypoxic tumor regionsTreat non-small cell lung cancerAnti-CTLA-4Anti-PD-1Immune checkpoint inhibitionTumor metabolic featuresProgression-free survivalCell lung cancerResistant cancer cellsHypoxic tumor regionsMHC-II levelsRegions of hypoxiaKnock-outCheckpoint inhibition207 Spatial transcriptomic profiling non-small cell lung cancer reveals potential drivers of CTL exclusion and dysfunction, and identifies novel predictive biomarkers for checkpoint blockade therapy
Cho C, Lopez-Giraldez F, Huang B, He J, Woodard G, Badri T, Kidacki M, Vesely M, Wang G, Ofori-Ntiamoah G, Ng E, Chen L. 207 Spatial transcriptomic profiling non-small cell lung cancer reveals potential drivers of CTL exclusion and dysfunction, and identifies novel predictive biomarkers for checkpoint blockade therapy. 2024, a236-a236. DOI: 10.1136/jitc-2024-sitc2024.0207.Peer-Reviewed Original ResearchNon-small cell lung cancerCheckpoint blockade therapyCell lung cancerBlockade therapyPredictive biomarkersLung cancerTherapy
2022
Brain metastatic outgrowth and osimertinib resistance are potentiated by RhoA in EGFR-mutant lung cancer
Adua S, Arnal-Estapé A, Zhao M, Qi B, Liu Z, Kravitz C, Hulme H, Strittmatter N, López-Giráldez F, Chande S, Albert A, Melnick M, Hu B, Politi K, Chiang V, Colclough N, Goodwin R, Cross D, Smith P, Nguyen D. Brain metastatic outgrowth and osimertinib resistance are potentiated by RhoA in EGFR-mutant lung cancer. Nature Communications 2022, 13: 7690. PMID: 36509758, PMCID: PMC9744876, DOI: 10.1038/s41467-022-34889-z.Peer-Reviewed Original ResearchConceptsGene expression programsRas homolog family member ACancer cellsFamily member AEpidermal growth factor receptorExpression programsMetastatic cancer cellsSRF signalingGrowth factor receptorTumor microenvironmentLung cancerFunctional linkExtracellular lamininDrug-resistant cancer cellsMutant non-small cell lung cancerNon-small cell lung cancerCentral nervous system relapseMolecular studiesMember AEGFR-mutant lung cancerFactor receptorNervous system relapseCell lung cancerDisseminated tumor cellsBrain tumor microenvironment