1993
Wavelet-Like Bases for the Fast Solution of Second-Kind Integral Equations
Alpert B, Beylkin G, Coifman R, Rokhlin V. Wavelet-Like Bases for the Fast Solution of Second-Kind Integral Equations. SIAM Journal On Scientific Computing 1993, 14: 159-184. DOI: 10.1137/0914010.Peer-Reviewed Original ResearchIntegral equationsSecond kind integral equationsKind integral equationsWavelet-like basisVector space basisIntegral operatorsNumerical solutionNumber of pointsFinite numberFast solutionSparse matricesNumerical resultsDiscretizationEquationsOperatorsSparse representationSingularitySolutionGeneralizationThe fast multipole method for electromagnetic scattering calculations
Coifman R, Rokhlin V, Wandzura S. The fast multipole method for electromagnetic scattering calculations. 1993, 48-51 vol.1. DOI: 10.1109/aps.1993.385405.Peer-Reviewed Original ResearchFast multipole methodMultipole methodDense impedance matrixThree-dimensional electromagnetic problemsBoundary integral equationsAccurate numerical modelingMethod of momentsIntegral equationsElectromagnetic problemsElectromagnetic scattering calculationsRadiation problemsElementary derivationPhysical interpretationImpedance matrixComputational complexityElectromagnetic scatteringScattering calculationsNumerical modelingSparse decompositionEquationsProblemDerivationMomentModelingCalculations
1990
Wavelets for the Fast Solution of Second-Kind Integral Equations
Alpert B, Beylkin G, Coifman R, Rokhlin V. Wavelets for the Fast Solution of Second-Kind Integral Equations. 1990 DOI: 10.21236/ada233650.Peer-Reviewed Original ResearchIntegral equationsSecond kind integral equationsKind integral equationsNon-oscillatory kernelsVector space basisIntegral operatorsNumerical solutionNumber of pointsFinite numberFast solutionSparse matricesNumerical resultsDiscretizationEquationsOperatorsSparse representationSingularitySolutionGeneralizationKernel