2006
Diffusion wavelets
Coifman R, Maggioni M. Diffusion wavelets. Applied And Computational Harmonic Analysis 2006, 21: 53-94. DOI: 10.1016/j.acha.2006.04.004.Peer-Reviewed Original ResearchPseudo-differential operatorsFast multipole methodClass of operatorsNon-homogeneous mediaAssociated Green's functionSpectral theorySymmetric operatorsMultiresolution analysisText documentsDownsampling operatorNumerical rankCoarse grainingCalderón–ZygmundStable algorithmMultiscale computationsData cloudOrthonormal scaling functionsMultipole methodDirectory structureOperator TScaling functionsGreen's functionDiffusion waveletsManifoldMultiscale analysis
1993
The fast multipole method for the wave equation: a pedestrian prescription
Coifman R, Rokhlin V, Wandzura S. The fast multipole method for the wave equation: a pedestrian prescription. IEEE Antennas And Propagation Magazine 1993, 35: 7-12. DOI: 10.1109/74.250128.Peer-Reviewed Original ResearchThe fast multipole method for electromagnetic scattering calculations
Coifman R, Rokhlin V, Wandzura S. The fast multipole method for electromagnetic scattering calculations. 1993, 48-51 vol.1. DOI: 10.1109/aps.1993.385405.Peer-Reviewed Original ResearchFast multipole methodMultipole methodDense impedance matrixThree-dimensional electromagnetic problemsBoundary integral equationsAccurate numerical modelingMethod of momentsIntegral equationsElectromagnetic problemsElectromagnetic scattering calculationsRadiation problemsElementary derivationPhysical interpretationImpedance matrixComputational complexityElectromagnetic scatteringScattering calculationsNumerical modelingSparse decompositionEquationsProblemDerivationMomentModelingCalculations