2024
Identifying the minimal sets of distance restraints for FRET‐assisted protein structural modeling
Liu Z, Grigas A, Sumner J, Knab E, Davis C, O'Hern C. Identifying the minimal sets of distance restraints for FRET‐assisted protein structural modeling. Protein Science 2024, 33: e5219. PMID: 39548730, PMCID: PMC11568256, DOI: 10.1002/pro.5219.Peer-Reviewed Original ResearchConceptsForster resonance energy transferProtein structure determination techniquesCellular environmentProtein structure modelingAmino acid pairsConformational changesProteins in vivoForster resonance energy transfer studiesCrowded cellular environmentStructure determination techniquesDynamics in vivoStructures in vivoInduce conformational changesProtein structureResonance energy transferRoot-mean-square deviationAcid pairsInter-residue restraintsStructural ensemblesAmino acidsNon-physiological environmentsProteinDistance restraintsNucleic acidsAminoIdentifying the minimal sets of distance restraints for FRET‐assisted protein structural modeling
Liu Z, Grigas A, Sumner J, Knab E, Davis C, O'Hern C. Identifying the minimal sets of distance restraints for FRET‐assisted protein structural modeling. Protein Science 2024, 33 PMID: 38800659, PMCID: PMC11118665, DOI: 10.1002/pro.5219.Peer-Reviewed Original ResearchForster resonance energy transferProtein structure determination techniquesCellular environmentProtein structure modelingAmino acid pairsConformational changesForster resonance energy transfer studiesCrowded cellular environmentStructure determination techniquesInduce conformational changesProtein structureResonance energy transferRoot-mean-square deviationAcid pairsInter-residue restraintsStructural ensemblesAmino acidsNon-physiological environmentsProteinDistance restraintsNucleic acidsAminoMD simulationsFRET pairsOrganelles
2021
Cellular Sticking Can Strongly Reduce Complex Binding by Speeding Dissociation
Davis C, Gruebele M. Cellular Sticking Can Strongly Reduce Complex Binding by Speeding Dissociation. The Journal Of Physical Chemistry B 2021, 125: 3815-3823. PMID: 33826329, DOI: 10.1021/acs.jpcb.1c00950.Peer-Reviewed Original ResearchConceptsSpliceosomal protein U1APotential binding partnerMajor cellular effectsProtein U1ABinding partnerU1 snRNACellular environmentNonspecific interactionsFörster resonance energy transferProper bindingCellular componentsResonance energy transferU1ALive cellsLarge hydrophobic surface areaMacromolecular crowdingCellular effectsHydrophobic surface areaOS cellsModel systemComplex bindingHigh binding affinityWeak nonspecific interactionsBinding affinitiesCells
2017
How does solvation in the cell affect protein folding and binding?
Davis CM, Gruebele M, Sukenik S. How does solvation in the cell affect protein folding and binding? Current Opinion In Structural Biology 2017, 48: 23-29. PMID: 29035742, DOI: 10.1016/j.sbi.2017.09.003.Peer-Reviewed Original ResearchConceptsMild environmental changesProtein functionCellular processesProtein foldingCellular environmentProtein surface areaProtein studiesLive cellsEnvironmental changesNon-steric interactionsProtein processesNatural contextCellsInteraction typesSolute environmentFoldingProteinRecent examplesBindingRapid changesSolute composition