2024
VPS13B is localized at the interface between Golgi cisternae and is a functional partner of FAM177A1
Ugur B, Schueder F, Shin J, Hanna M, Wu Y, Leonzino M, Su M, McAdow A, Wilson C, Postlethwait J, Solnica-Krezel L, Bewersdorf J, De Camilli P. VPS13B is localized at the interface between Golgi cisternae and is a functional partner of FAM177A1. Journal Of Cell Biology 2024, 223: e202311189. PMID: 39331042, PMCID: PMC11451052, DOI: 10.1083/jcb.202311189.Peer-Reviewed Original ResearchConceptsLipid transportGolgi complex proteinGolgi subcompartmentsGolgi membranesGolgi cisternaeProtein familyFunctional partnersGolgi complexKO cellsComplex proteinsFAM177A1GolgiVPS13BAdjacent membranesMutationsProteinCohen syndromeLipidOrthologsInteractorsBrefeldinMembraneOrganellesSubcompartmentsDevelopmental disordersLoss of function of FAM177A1, a Golgi complex localized protein, causes a novel neurodevelopmental disorder
Kohler J, Legro N, Baldridge D, Shin J, Bowman A, Ugur B, Jackstadt M, Shriver L, Patti G, Zhang B, Feng W, McAdow A, Goddard P, Ungar R, Jensen T, Smith K, Fresard L, Alvarez R, Bonner D, Reuter C, McCormack C, Kravets E, Marwaha S, Holt J, Network U, Acosta M, Adam M, Adams D, Alvarez R, Alvey J, Amendola L, Andrews A, Ashley E, Bacino C, Bademci G, Balasubramanyam A, Baldridge D, Bale J, Bamshad M, Barbouth D, Bayrak-Toydemir P, Beck A, Beggs A, Behrens E, Bejerano G, Bellen H, Bennett J, Berg-Rood B, Bernstein J, Berry G, Bican A, Bivona S, Blue E, Bohnsack J, Bonner D, Botto L, Boyd B, Briere L, Burke E, Burrage L, Butte M, Byers P, Byrd W, Carey J, Carrasquillo O, Cassini T, Chang T, Chanprasert S, Chao H, Chinn I, Clark G, Coakley T, Cobban L, Cogan J, Coggins M, Cole F, Colley H, Cope H, Corner B, Corona R, Craigen W, Crouse A, Cunningham M, D’Souza P, Dai H, Dasari S, Davis J, Dayal J, Dell’Angelica E, Dickson P, Dipple K, Doherty D, Dorrani N, Doss A, Douine E, Earl D, Eckstein D, Emrick L, Eng C, Ezell K, Falk M, Fieg E, Fisher P, Fogel B, Forghani I, Gahl W, Glass I, Gochuico B, Goddard P, Godfrey R, Golden-Grant K, Grajewski A, Hadley D, Hahn S, Halley M, Hamid R, Hassey K, Hayes N, High F, Hing A, Hisama F, Holm I, Hom J, Horike-Pyne M, Huang A, Hutchison S, Introne W, Isasi R, Izumi K, Jamal F, Jarvik G, Jarvik J, Jayadev S, Jean-Marie O, Jobanputra V, Karaviti L, Ketkar S, Kiley D, Kilich G, Kobren S, Kohane I, Kohler J, Korrick S, Kozuira M, Krakow D, Krasnewich D, Kravets E, Lalani S, Lam B, Lam C, Lanpher B, Lanza I, LeBlanc K, Lee B, Levitt R, Lewis R, Liu P, Liu X, Longo N, Loo S, Loscalzo J, Maas R, Macnamara E, MacRae C, Maduro V, Maghiro A, Mahoney R, Malicdan M, Mamounas L, Manolio T, Mao R, Maravilla K, Marom R, Marth G, Martin B, Martin M, Martínez-Agosto J, Marwaha S, McCauley J, McConkie-Rosell A, McCray A, McGee E, Mefford H, Merritt J, Might M, Mirzaa G, Morava E, Moretti P, Mulvihill J, Nakano-Okuno M, Nelson S, Neumann S, Newman J, Nicholas S, Nickerson D, Nieves-Rodriguez S, Novacic D, Oglesbee D, Orengo J, Pace L, Pak S, Pallais J, Palmer C, Papp J, Parker N, Phillips J, Posey J, Potocki L, Swerdzewski B, Quinlan A, Rao D, Raper A, Raskind W, Renteria G, Reuter C, Rives L, Robertson A, Rodan L, Rosenfeld J, Rosenwasser N, Rossignol F, Ruzhnikov M, Sacco R, Sampson J, Saporta M, Schaechter J, Schedl T, Schoch K, Scott D, Scott C, Seto E, Shashi V, Shin J, Silverman E, Sinsheimer J, Sisco K, Smith E, Smith K, Solnica-Krezel L, Solomon B, Spillmann R, Stoler J, Sullivan K, Sullivan J, Sun A, Sutton S, Sweetser D, Sybert V, Tabor H, Tan Q, Tan A, Tarakad A, Tekin M, Telischi F, Thorson W, Tifft C, Toro C, Tran A, Ungar R, Urv T, Vanderver A, Velinder M, Viskochil D, Vogel T, Wahl C, Walker M, Wallace S, Walley N, Wambach J, Wan J, Wangler M, Ward P, Wegner D, Hubshman M, Wener M, Wenger T, Westerfield M, Wheeler M, Whitlock J, Wolfe L, Worley K, Xiao C, Yamamoto S, Yang J, Zhang Z, Zuchner S, Worthey E, Ashley E, Montgomery S, Fisher P, Postlethwait J, De Camilli P, Solnica-Krezel L, Bernstein J, Wheeler M. Loss of function of FAM177A1, a Golgi complex localized protein, causes a novel neurodevelopmental disorder. Genetics In Medicine 2024, 26: 101166. PMID: 38767059, PMCID: PMC11451386, DOI: 10.1016/j.gim.2024.101166.Peer-Reviewed Original ResearchNegative regulation of cell proliferationLoss-of-function variantsPathways associated with apoptosisRegulation of cell proliferationRelationship to human diseaseHuman cell linesNeurodevelopmental disordersRNA-seqLocalized proteinsImmune-associated genesZebrafish cellsGolgi complexModel organismsGlobal developmental delayBiallelic variantsFAM177A1Negative regulatorHuman diseasesZebrafish model organismPhysiological functionsCell linesGolgiHuman fibroblastsZebrafishCell proliferation
2023
Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila
Scott H, Novikov B, Ugur B, Allen B, Mertsalov I, Monagas-Valentin P, Koff M, Robinson S, Aoki K, Veizaj R, Lefeber D, Tiemeyer M, Bellen H, Panin V. Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila. ELife 2023, 12: e78280. PMID: 36946697, PMCID: PMC10110239, DOI: 10.7554/elife.78280.Peer-Reviewed Original ResearchConceptsSialylation pathwayCMP-sialic acid synthetaseStress toleranceAnimal developmentProtein functionVoltage-gated sodium channelsGlycan terminiNeural transmissionDedicated pathwaysGenesDifferent cellsPathwayOxidative stressSodium channelsSialic acidNervous systemNeural excitabilitySialylationToleranceNormal levelsNeural functionDrosophilaTerminusExcitabilitySynthetase
2022
Two neuronal peptides encoded from a single transcript regulate mitochondrial complex III in Drosophila
Bosch J, Ugur B, Pichardo-Casas I, Rabasco J, Escobedo F, Zuo Z, Brown B, Celniker S, Sinclair D, Bellen H, Perrimon N. Two neuronal peptides encoded from a single transcript regulate mitochondrial complex III in Drosophila. ELife 2022, 11: e82709. PMID: 36346220, PMCID: PMC9681215, DOI: 10.7554/elife.82709.Peer-Reviewed Original ResearchConceptsSmall open reading framesClasses of genesShares sequence similarityOpen reading frameSequence similarityBicistronic transcriptBiological functionsPhenotypic analysisMitochondrial functionImportant regulatorThousands of peptidesNeuronal functionGenesWealth of informationTranscriptsAnimal lethalityPeptidesRecent studiesParalogsDrosophilaSmORFsMitochondriaRegulatorRegulatesNeuronal peptidesA partnership between the lipid scramblase XK and the lipid transfer protein VPS13A at the plasma membrane
Guillén-Samander A, Wu Y, Pineda SS, García FJ, Eisen JN, Leonzino M, Ugur B, Kellis M, Heiman M, De Camilli P. A partnership between the lipid scramblase XK and the lipid transfer protein VPS13A at the plasma membrane. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2205425119. PMID: 35994651, PMCID: PMC9436381, DOI: 10.1073/pnas.2205425119.Peer-Reviewed Original ResearchConceptsCaudate neuronsClinical manifestationsExposure of PtdSerPH domainMcLeod syndromeCell surface exposureER-PM contactsLipid dropletsTransport of lipidsPutative roleUnknown mechanismNeuronsLipid transfer proteinVPS13ALipid scramblasesTransfer proteinCytosolic loopExposurePlasma membraneCell surfaceEndoplasmic reticulumLipid transferERSyndromeDiseaseTDP-43 Proteinopathy Causes Broad Metabolic Alterations including TCA Cycle Intermediates and Dopamine Levels in Drosophila Models of ALS
Loganathan S, Wilson B, Carey S, Manzo E, Joardar A, Ugur B, Zarnescu D. TDP-43 Proteinopathy Causes Broad Metabolic Alterations including TCA Cycle Intermediates and Dopamine Levels in Drosophila Models of ALS. Metabolites 2022, 12: 101. PMID: 35208176, PMCID: PMC8876928, DOI: 10.3390/metabo12020101.Peer-Reviewed Original ResearchAmyotrophic lateral sclerosisTDP-43 proteinopathyTDP-43Dopamine levelsMotor neuronsMetabolic alterationsModel of ALSMetabolic changesTDP-43 expressionMotor neuron diseaseComplex neurodegenerative disorderGlobal metabolomic profilingTDP-43 aggregationALS patientsDietary interventionDopamine agonistsGlucose toleranceInsulin resistanceNeuron diseaseNeurotransmitter levelsSelective degenerationTricarboxylic acid cycle metabolitesLateral sclerosisLocomotor functionLocomotor dysfunction
2020
BICRA, a SWI/SNF Complex Member, Is Associated with BAF-Disorder Related Phenotypes in Humans and Model Organisms
Barish S, Barakat T, Michel B, Mashtalir N, Phillips J, Valencia A, Ugur B, Wegner J, Scott T, Bostwick B, Network U, Murdock D, Dai H, Perenthaler E, Nikoncuk A, van Slegtenhorst M, Brooks A, Keren B, Nava C, Mignot C, Douglas J, Rodan L, Nowak C, Ellard S, Stals K, Lynch S, Faoucher M, Lesca G, Edery P, Engleman K, Zhou D, Thiffault I, Herriges J, Gass J, Louie R, Stolerman E, Washington C, Vetrini F, Otsubo A, Pratt V, Conboy E, Treat K, Shannon N, Camacho J, Wakeling E, Yuan B, Chen C, Rosenfeld J, Westerfield M, Wangler M, Yamamoto S, Kadoch C, Scott D, Bellen H. BICRA, a SWI/SNF Complex Member, Is Associated with BAF-Disorder Related Phenotypes in Humans and Model Organisms. American Journal Of Human Genetics 2020, 107: 1096-1112. PMID: 33232675, PMCID: PMC7820627, DOI: 10.1016/j.ajhg.2020.11.003.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAnimalsChildChild, PreschoolChromosomal Proteins, Non-HistoneDevelopmental DisabilitiesDrosophila melanogasterDrosophila ProteinsFemaleGenes, DominantGenetic VariationHaploinsufficiencyHumansInfantMaleMicroscopy, ConfocalMutation, MissenseNeurogliaNeuronsPhenotypeProtein BindingTumor Suppressor ProteinsZebrafishZebrafish ProteinsConceptsSWI/SNF complex membersComplex membersSWI/SNF familyPosition-effect variegationIntellectual disability disordersContext-specific mannerNcBAF complexesDrosophila orthologDominant enhancersBAF complexModel organismsFunctional characterizationDisability disordersCraniofacial defectsNeurodevelopmental phenotypesOrthologsRelated phenotypesPhenotypeFunction variantsRare neurodevelopmental disorderGenesRare variantsFliesPathogenic variantsNeurodevelopmental disordersRole of VPS13, a protein with similarity to ATG2, in physiology and disease
Ugur B, Hancock-Cerutti W, Leonzino M, De Camilli P. Role of VPS13, a protein with similarity to ATG2, in physiology and disease. Current Opinion In Genetics & Development 2020, 65: 61-68. PMID: 32563856, PMCID: PMC7746581, DOI: 10.1016/j.gde.2020.05.027.Peer-Reviewed Original ResearchConceptsAutophagy protein ATG2N-terminal halfVPS13 proteinsMolecular functionsCellular processesFamily proteinsVps13Contact sitesAtg2Intracellular organellesFunctional studiesNovel mechanismProteinSimilar roleHydrophobic channelStructural studiesNeurodegenerative disordersPhysiologyDirect transferOrganellesSimilarityMutationsRoleLipidsBilayers
2019
cindr, the Drosophila Homolog of the CD2AP Alzheimer’s Disease Risk Gene, Is Required for Synaptic Transmission and Proteostasis
Ojelade S, Lee T, Giagtzoglou N, Yu L, Ugur B, Li Y, Duraine L, Zuo Z, Petyuk V, De Jager P, Bennett D, Arenkiel B, Bellen H, Shulman J. cindr, the Drosophila Homolog of the CD2AP Alzheimer’s Disease Risk Gene, Is Required for Synaptic Transmission and Proteostasis. Cell Reports 2019, 28: 1799-1813.e5. PMID: 31412248, PMCID: PMC6703184, DOI: 10.1016/j.celrep.2019.07.041.Peer-Reviewed Original ResearchConceptsPlasma membrane calcium ATPaseDisease risk genesDisease susceptibility genesSynaptic vesicle recyclingUbiquitin-proteasome systemMembrane calcium ATPaseAlzheimer’s disease risk genesDrosophila homologConserved roleAlzheimer's disease susceptibility genesSynaptic proteostasisAdaptor proteinNeuronal requirementsVesicle recyclingProteostasisCindrRisk genesSusceptibility genesSynapse maturationHuman postmortem brainHuman tauProtein levelsNeurofibrillary tangle pathologyNull miceAD susceptibility
2017
The Krebs Cycle Enzyme Isocitrate Dehydrogenase 3A Couples Mitochondrial Metabolism to Synaptic Transmission
Ugur B, Bao H, Stawarski M, Duraine LR, Zuo Z, Lin YQ, Neely GG, Macleod GT, Chapman ER, Bellen HJ. The Krebs Cycle Enzyme Isocitrate Dehydrogenase 3A Couples Mitochondrial Metabolism to Synaptic Transmission. Cell Reports 2017, 21: 3794-3806. PMID: 29281828, PMCID: PMC5747319, DOI: 10.1016/j.celrep.2017.12.005.Peer-Reviewed Original ResearchConceptsSynaptic vesiclesKrebs cycle enzymeRole of metabolitesC2 domainPlasma membraneMitochondrial metabolismSynaptic transmissionMetabolic regulationCycle enzymesSynaptic roleAlpha-ketoglutarateSyt1ΑKGNeurodegenerative disordersDependent processesRegulationMetabolitesIDH3ASynaptotagmin1Multiple levelsFliesRoleFusionVesiclesATP
2016
Drosophila tools and assays for the study of human diseases
Ugur B, Chen K, Bellen HJ. Drosophila tools and assays for the study of human diseases. Disease Models & Mechanisms 2016, 9: 235-244. PMID: 26935102, PMCID: PMC4833332, DOI: 10.1242/dmm.023762.Peer-Reviewed Original ResearchConceptsHuman diseasesHuman disease-causing genesUse of DrosophilaDrosophila melanogasterDisease-causing genesMolecular parallelsSpecific genesMolecular mechanismsPhysiological processesPathogenic mechanismsMorphological differencesCellular featuresFliesGenesMolecular pathogenesisInternal organ systemsAssaysCentral nervous systemDrosophilaMelanogasterVertebratesPowerful toolNervous systemOrgan systemsOrganisms
2014
Large-scale identification of chemically induced mutations in Drosophila melanogaster
Haelterman NA, Jiang L, Li Y, Bayat V, Sandoval H, Ugur B, Tan KL, Zhang K, Bei D, Xiong B, Charng WL, Busby T, Jawaid A, David G, Jaiswal M, Venken KJ, Yamamoto S, Chen R, Bellen HJ. Large-scale identification of chemically induced mutations in Drosophila melanogaster. Genome Research 2014, 24: 1707-1718. PMID: 25258387, PMCID: PMC4199363, DOI: 10.1101/gr.174615.114.Peer-Reviewed Original ResearchConceptsWhole-genome sequencingDrosophila X chromosomeThousands of polymorphismsEukaryotic model organismForward genetic screenChemical mutagenesis screenFunctions of thousandsPhenotype of interestLarge-scale identificationTime-consuming identificationHundreds of strainsSingle nucleotide variantsGenetic screenEssential genesDrosophila melanogasterModel organismsMutagenesis screenRescue lethalityX chromosomeMutant strainCandidate mutationsMolecular lesionsLarge duplicationChemical mutagensRough mapping