2024
Monoclonal antibodies that block Roundabout 1 and 2 signaling target pathological ocular neovascularization through myeloid cells
Geraldo L, Xu Y, Mouthon G, Furtado J, Leser F, Blazer L, Adams J, Zhang S, Zheng L, Song E, Robinson M, Thomas J, Sidhu S, Eichmann A. Monoclonal antibodies that block Roundabout 1 and 2 signaling target pathological ocular neovascularization through myeloid cells. Science Translational Medicine 2024, 16: eadn8388. PMID: 39565875, DOI: 10.1126/scitranslmed.adn8388.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, MonoclonalCorneal NeovascularizationDisease Models, AnimalHumansIntercellular Signaling Peptides and ProteinsMiceMice, Inbred C57BLMyeloid CellsNeovascularization, PathologicNerve Tissue ProteinsReceptors, ImmunologicRetinaRetinal NeovascularizationSignal TransductionConceptsOxygen-induced retinopathyPathological ocular neovascularizationCorneal neovascularizationMyeloid cellsOcular neovascularizationHeterogeneous population of myeloid cellsBlood-retina barrier integrityPopulation of myeloid cellsActivation of myeloid cellsMonoclonal antibodiesOcular neovascular diseasesBlinding eye diseaseHuman monoclonal antibodyExtracellular domainMouse model in vivoModel in vivoMAb treatmentMyeloid populationsOIR retinasNeovascular diseasesVision lossEye diseaseSlit-RoboSlit-Robo signalingBlocking antibodiesNotch signaling regulates UNC5B to suppress endothelial proliferation, migration, junction activity, and retinal plexus branching
Raza Q, Nadeem T, Youn S, Swaminathan B, Gupta A, Sargis T, Du J, Cuervo H, Eichmann A, Ackerman S, Naiche L, Kitajewski J. Notch signaling regulates UNC5B to suppress endothelial proliferation, migration, junction activity, and retinal plexus branching. Scientific Reports 2024, 14: 13603. PMID: 38866944, PMCID: PMC11169293, DOI: 10.1038/s41598-024-64375-z.Peer-Reviewed Original ResearchConceptsNotch signalingEndothelial cell behaviorEndothelial junctionsCell behaviorMultiple endothelial cell typesStabilization of endothelial junctionsNotch activationEndothelial Notch signalingTarget of Notch signalingTranscriptional activation complexEndothelial cell typesPlexus branchesVascular densityEndothelial proliferationBrain endotheliumMouse retinaIn vivo targetingEffector proteinsVascular outgrowthJunction activityNotch proteinsEndothelial cellsExcessive vascularizationDownstream effectorsEndothelial gene expressionStromal Cell-SLIT3/Cardiomyocyte-ROBO1 Axis Regulates Pressure Overload-Induced Cardiac Hypertrophy
Liu X, Li B, Wang S, Zhang E, Schultz M, Touma M, Da Rocha A, Evans S, Eichmann A, Herron T, Chen R, Xiong D, Jaworski A, Weiss S, Si M. Stromal Cell-SLIT3/Cardiomyocyte-ROBO1 Axis Regulates Pressure Overload-Induced Cardiac Hypertrophy. Circulation Research 2024, 134: 913-930. PMID: 38414132, PMCID: PMC10977056, DOI: 10.1161/circresaha.122.321292.Peer-Reviewed Original ResearchConceptsTransverse aortic constrictionAortic constrictionPressure overloadCardiomyocyte hypertrophyVascular mural cellsCardiomyocyte hypertrophy in vitroDecreased left ventricular hypertrophyStimulate cardiomyocyte hypertrophyCongenital heart defectsCell-specific knockoutLeft ventricular functionAdverse cardiac remodelingVentricular pressure overloadCardiomyocyte-specific deletionMural cellsHypertrophy in vitroPressure overload stressCardiac stromal cellsMyocardial tissue samplesEffects in vitroIn vitro studiesHypertrophy-related genesHeart defectsRegulate cardiac developmentVentricular function
2023
CCL21-CCR7 signaling promotes microglia/macrophage recruitment and chemotherapy resistance in glioblastoma
Geraldo L, Garcia C, Xu Y, Leser F, Grimaldi I, de Camargo Magalhães E, Dejaegher J, Solie L, Pereira C, Correia A, De Vleeschouwer S, Tavitian B, Canedo N, Mathivet T, Thomas J, Eichmann A, Lima F. CCL21-CCR7 signaling promotes microglia/macrophage recruitment and chemotherapy resistance in glioblastoma. Cellular And Molecular Life Sciences 2023, 80: 179. PMID: 37314567, PMCID: PMC10267017, DOI: 10.1007/s00018-023-04788-7.Peer-Reviewed Original ResearchConceptsMicroglia/macrophage recruitmentC chemokine receptor type 7CCL21-CCR7Central nervous systemMacrophage recruitmentTumor microenvironmentChemokine receptor type 7Fatal primary tumorMouse GBM modelsChemokine ligand 21Potential therapeutic targetVEGF-A productionTumor cell deathCCR7 expressionTherapeutic optionsPrimary tumorPoor survivalCurrent treatmentGBM patientsTumor cell migrationTherapeutic targetBrain cancerNervous systemChemotherapy resistanceLigand 21
2021
Stop the Divide and Build Coronary Arteries
Zarkada G, Eichmann A. Stop the Divide and Build Coronary Arteries. Developmental Cell 2021, 56: 255-256. PMID: 33561420, DOI: 10.1016/j.devcel.2021.01.008.Commentaries, Editorials and Letters
2012
ALK1 Signaling Inhibits Angiogenesis by Cooperating with the Notch Pathway
Larrivée B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A, Simons M, Eichmann A. ALK1 Signaling Inhibits Angiogenesis by Cooperating with the Notch Pathway. Developmental Cell 2012, 22: 489-500. PMID: 22421041, PMCID: PMC4047762, DOI: 10.1016/j.devcel.2012.02.005.Peer-Reviewed Original ResearchMeSH KeywordsActivin Receptors, Type IActivin Receptors, Type IIAnimalsArteriovenous MalformationsBasic Helix-Loop-Helix Transcription FactorsCell Cycle ProteinsDipeptidesDisease Models, AnimalGrowth Differentiation Factor 2Growth Differentiation FactorsHumansMiceMice, Inbred C57BLNeovascularization, PhysiologicReceptors, NotchRepressor ProteinsRetinaSignal TransductionSmad ProteinsTelangiectasia, Hereditary HemorrhagicVascular Endothelial Growth FactorsConceptsActivin receptor-like kinase 1Hereditary hemorrhagic telangiectasiaArteriovenous malformationsActivation of ALK1Receptor-like kinase 1Notch pathwayVascular lesionsHemorrhagic telangiectasiaPostnatal developmentInhibits angiogenesisNotch inhibitionTip cell formationReceptor familyAngiogenesisHypervascularizationALK1Kinase 1Cell formationEndothelial sproutingPatients
2011
Robo4 Maintains Vessel Integrity and Inhibits Angiogenesis by Interacting with UNC5B
Koch AW, Mathivet T, Larrivée B, Tong RK, Kowalski J, Pibouin-Fragner L, Bouvrée K, Stawicki S, Nicholes K, Rathore N, Scales SJ, Luis E, del Toro R, Freitas C, Bréant C, Michaud A, Corvol P, Thomas JL, Wu Y, Peale F, Watts RJ, Tessier-Lavigne M, Bagri A, Eichmann A. Robo4 Maintains Vessel Integrity and Inhibits Angiogenesis by Interacting with UNC5B. Developmental Cell 2011, 20: 33-46. PMID: 21238923, DOI: 10.1016/j.devcel.2010.12.001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, BlockingBlood VesselsCapillary PermeabilityEnzyme ActivationHumansLigandsMiceModels, BiologicalNeovascularization, PathologicNerve Tissue ProteinsNetrin ReceptorsProtein BindingReceptors, Cell SurfaceReceptors, ImmunologicRetinal VesselsSignal TransductionSrc-Family KinasesSus scrofaVascular Endothelial Growth Factor AConceptsProtein-protein interaction screenVascular endothelial growth factorFunction-blocking monoclonal antibodiesInteraction screenNovel functionGuidance receptorsExtracellular domainNetrin receptorsReceptor familyVessel integrityReceptor interactionInhibits angiogenesisRobo4Unexpected interactionsGrowth factorEndothelial cellsUNC5BVascular integrityEndothelial growth factorAngiogenesisIncreases angiogenesisReceptorsMonoclonal antibodiesIntegrityProtein
2005
Control of arterial branching morphogenesis in embryogenesis: go with the flow
le Noble F, Fleury V, Pries A, Corvol P, Eichmann A, Reneman R. Control of arterial branching morphogenesis in embryogenesis: go with the flow. Cardiovascular Research 2005, 65: 619-628. PMID: 15664388, DOI: 10.1016/j.cardiores.2004.09.018.Peer-Reviewed Original ResearchConceptsBranching morphogenesisArterial-venous differentiationPatterning mechanismsMorphological eventsEmbryogenesisMorphogenesisEmbryonic arteriesEmbryo survivalPivotal roleEndothelial cellsVascular systemVivo observationsRemodeling processPre-existing collateralsProminent roleEmbryo-fetal developmentDifferentiationRegulationRoleIschemic diseasesPlasticityArterial growthDisconnection processNew strategyTrees
2004
Retinoic acid controls blood vessel formation by modulating endothelial and mural cell interaction via suppression of Tie2 signaling in vascular progenitor cells
Suzuki Y, Komi Y, Ashino H, Yamashita J, Inoue J, Yoshiki A, Eichmann A, Amanuma H, Kojima S. Retinoic acid controls blood vessel formation by modulating endothelial and mural cell interaction via suppression of Tie2 signaling in vascular progenitor cells. Blood 2004, 104: 166-169. PMID: 15026310, DOI: 10.1182/blood-2003-09-3293.Peer-Reviewed Original ResearchConceptsVascular progenitor cellsAll-trans retinoic acidChicken chorioallantoic membraneEndothelial cellsTie2 signalingProgenitor cellsBlood vessel formationMural cellsEpithelial layerExpression of angiopoietin-2Vessel formationRetinoic acidImpaired vascular remodelingImpaired branchingAngiopoietin-2Ang-1Vascular remodelingRo41-5253Cell interactionsMural cell interactions
2001
A model for gene therapy of human hereditary lymphedema
Karkkainen M, Saaristo A, Jussila L, Karila K, Lawrence E, Pajusola K, Bueler H, Eichmann A, Kauppinen R, Kettunen M, Ylä-Herttuala S, Finegold D, Ferrell R, Alitalo K. A model for gene therapy of human hereditary lymphedema. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 12677-12682. PMID: 11592985, PMCID: PMC60113, DOI: 10.1073/pnas.221449198.Peer-Reviewed Original ResearchMeSH KeywordsAdenoviridaeAmino Acid SequenceAnimalsDependovirusDisease Models, AnimalEndothelial Growth FactorsGenetic TherapyHumansLymphedemaMaleMiceMice, Inbred BALB CMice, Inbred C3HMolecular Sequence DataNerve Tissue ProteinsNeuropilin-1Receptor Protein-Tyrosine KinasesReceptors, Growth FactorVascular Endothelial Growth Factor CVascular Endothelial Growth Factor Receptor-3
2000
Developmental expression of Pim kinases suggests functions also outside of the hematopoietic system
Eichmann A, Yuan L, Bréant C, Alitalo K, Koskinen P. Developmental expression of Pim kinases suggests functions also outside of the hematopoietic system. Oncogene 2000, 19: 1215-1224. PMID: 10713710, DOI: 10.1038/sj.onc.1203355.Peer-Reviewed Original ResearchMeSH KeywordsAbdomenAmino Acid SequenceAnimalsCloning, MolecularEctodermEmbryo, NonmammalianEmbryonic and Fetal DevelopmentEmbryonic DevelopmentGene Expression Regulation, DevelopmentalHematopoiesisHumansMiceMolecular Sequence DataNervous SystemOrgan SpecificityProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-pim-1QuailRatsTranscription, GeneticConceptsExpression patternsSerine/threonine kinaseDeduced amino acid sequenceDynamic expression patternHematopoietic systemPim-1Amino acid sequencePim family kinasesEarly developmental stagesFunctional redundancyThreonine kinaseFamily kinasesEmbryonic developmentStrong homologyNovel functionAcid sequenceExpression sitesPIM genesAvian embryosDevelopmental expressionDevelopmental stagesPIM familyPIM kinasesCDNAKinase
1999
Récepteurs et développement des cellules endothéliales et hématopoïétiques
Eichmann A, Moyon D, Corbel C. Récepteurs et développement des cellules endothéliales et hématopoïétiques. Biologie Aujourd Hui 1999, 193: 155-157. PMID: 10451349, DOI: 10.1051/jbio/1999193020155.Peer-Reviewed Original Research