2024
Zonation and ligand and dose dependence of sphingosine 1-phosphate receptor-1 signalling in blood and lymphatic vasculature
Del Gaudio I, Nitzsche A, Boyé K, Bonnin P, Poulet M, Nguyen T, Couty L, Ha H, Nguyen D, Cazenave-Gassiot A, Alaya K, Thérond P, Chun J, Wenk M, Proia R, Henrion D, Nguyen L, Eichmann A, Camerer E. Zonation and ligand and dose dependence of sphingosine 1-phosphate receptor-1 signalling in blood and lymphatic vasculature. Cardiovascular Research 2024, cvae168. PMID: 39086170, DOI: 10.1093/cvr/cvae168.Peer-Reviewed Original ResearchHigh endothelial venulesS1PR1 signalingEndothelial functionS1P productionDisease states associated with endothelial dysfunctionPlasma S1PDose-dependentlyLymphatic vasculatureEndothelial cellsResistance-sized arteriesLevels of sphingosine 1-phosphateLung capillariesS1P receptor 1Sphingosine 1-phosphateImmunosuppressive therapyLigand-independent mechanismResistance arteriesLymph nodesDeficient miceAlbumin extravasationHematopoietic cellsCirculating levelsEndothelial dysfunctionS1P releaseCirculating biomarkersACVR1/ALK2-p21 signaling axis modulates proliferation of the venous endothelium in the retinal vasculature
Pak B, Kim M, Han O, Lee H, Dubrac A, Choi W, Yang J, Boyé K, Cho H, Citrin K, Kim I, Eichmann A, Bautch V, Jin S. ACVR1/ALK2-p21 signaling axis modulates proliferation of the venous endothelium in the retinal vasculature. Angiogenesis 2024, 27: 765-777. PMID: 38955953, DOI: 10.1007/s10456-024-09936-6.Peer-Reviewed Original ResearchBone morphogenetic proteinVenous endotheliumProliferation of endotheliumBone morphogenetic protein signalingRetinal vesselsActivin A type I receptorExpression of CDKN1A/p21Bone morphogenetic protein receptorProliferation of endothelial cellsCell cycle progressionRetinal vasculatureEndothelial proliferationACVR1/ALK2I receptorEndotheliumEndothelial cellsCycle progressionModulate angiogenesisActive proliferationMorphogenetic proteinsProliferationContext of angiogenesisAngiogenesisVasculatureCDKN1A/p21Notch signaling regulates UNC5B to suppress endothelial proliferation, migration, junction activity, and retinal plexus branching
Raza Q, Nadeem T, Youn S, Swaminathan B, Gupta A, Sargis T, Du J, Cuervo H, Eichmann A, Ackerman S, Naiche L, Kitajewski J. Notch signaling regulates UNC5B to suppress endothelial proliferation, migration, junction activity, and retinal plexus branching. Scientific Reports 2024, 14: 13603. PMID: 38866944, PMCID: PMC11169293, DOI: 10.1038/s41598-024-64375-z.Peer-Reviewed Original ResearchConceptsNotch signalingEndothelial cell behaviorEndothelial junctionsCell behaviorMultiple endothelial cell typesStabilization of endothelial junctionsNotch activationEndothelial Notch signalingTarget of Notch signalingTranscriptional activation complexEndothelial cell typesPlexus branchesVascular densityEndothelial proliferationBrain endotheliumMouse retinaIn vivo targetingEffector proteinsVascular outgrowthJunction activityNotch proteinsEndothelial cellsExcessive vascularizationDownstream effectorsEndothelial gene expressionComplementary and Inducible creERT2 Mouse Models for Functional Evaluation of Endothelial Cell Subtypes in the Bone Marrow
Poulos M, Ramalingam P, Winiarski A, Gutkin M, Katsnelson L, Carter C, Pibouin-Fragner L, Eichmann A, Thomas J, Miquerol L, Butler J. Complementary and Inducible creERT2 Mouse Models for Functional Evaluation of Endothelial Cell Subtypes in the Bone Marrow. Stem Cell Reviews And Reports 2024, 20: 1135-1149. PMID: 38438768, PMCID: PMC11087254, DOI: 10.1007/s12015-024-10703-9.Peer-Reviewed Original ResearchBone marrowEndothelial cellsMouse modelAdult bone marrowArteriole endothelial cellsAdult BMOff-target activityHematopoietic dysfunctionAdult marrowHematopoietic homeostasisEndothelial cell subtypesVascular subtypeCre-expressing lineEndothelial subtypesEndothelial-specificMouse linesHSC activationCell subtypesEC subtypesParacrine signalingPerivascular cellsModulate HSC activationMarrowSubtypesAdult endotheliumVascular development, remodeling and maturation
Furtado J, Eichmann A. Vascular development, remodeling and maturation. Current Topics In Developmental Biology 2024, 159: 344-370. PMID: 38729681, DOI: 10.1016/bs.ctdb.2024.02.001.Peer-Reviewed Original ResearchGene expression patternsKnowledge of vascular biologyControlling nutrient uptakeEarly embryonic developmentDysfunctional vasculatureVascular systemVascular system developmentSystem dysfunctionExpression patternsOrgan physiologyFunctional circulatory systemEndothelial cellsTherapeutic potentialEmbryonic developmentVascular system dysfunctionNutrient uptakeBlood vesselsSemi-permeable barrierVascular biologyHuman morbidity
2023
Chylomicrons Regulate Lacteal Permeability and Intestinal Lipid Absorption
Zarkada G, Chen X, Zhou X, Lange M, Zeng L, Lv W, Zhang X, Li Y, Zhou W, Liu K, Chen D, Ricard N, Liao J, Kim Y, Benedito R, Claesson-Welsh L, Alitalo K, Simons M, Ju R, Li X, Eichmann A, Zhang F. Chylomicrons Regulate Lacteal Permeability and Intestinal Lipid Absorption. Circulation Research 2023, 133: 333-349. PMID: 37462027, PMCID: PMC10530007, DOI: 10.1161/circresaha.123.322607.Peer-Reviewed Original ResearchConceptsLymphatic endothelial cellsCell-cell junctionsCytoskeleton contractionMolecular biology approachesSmall GTPase Rac1Cytoskeletal contractilityBiology approachGTPase Rac1Stress fibersA SignalingPI3KLipid uptakePermeability regulationLymphatic permeabilityIntestinal lipid absorptionLEC junctionJunction openingEndothelial cellsLymphatic capillariesVEGFR-2Fundamental mechanismsLymphatic barrierLymphatic vesselsVascular endothelial growthLymphatic junctionsGenetic or therapeutic neutralization of ALK1 reduces LDL transcytosis and atherosclerosis in mice
Lee S, Schleer H, Park H, Jang E, Boyer M, Tao B, Gamez-Mendez A, Singh A, Folta-Stogniew E, Zhang X, Qin L, Xiao X, Xu L, Zhang J, Hu X, Pashos E, Tellides G, Shaul P, Lee W, Fernandez-Hernando C, Eichmann A, Sessa W. Genetic or therapeutic neutralization of ALK1 reduces LDL transcytosis and atherosclerosis in mice. Nature Cardiovascular Research 2023, 2: 438-448. PMID: 39196046, PMCID: PMC11358031, DOI: 10.1038/s44161-023-00266-2.Peer-Reviewed Original ResearchLDL transcytosisLDL receptor knockout miceReceptor knockout miceAtherosclerotic cardiovascular diseaseLow-density lipoprotein accumulationHigh-fat dietPromising therapeutic strategyTherapeutic neutralizationMacrophage infiltrationTriglyceride levelsLDL entryCardiovascular diseaseSelective monoclonal antibodiesLipoprotein accumulationTherapeutic strategiesKnockout micePlaque formationAtherosclerosis initiationType 1Genetic deletionArterial wallMonoclonal antibodiesEndothelial cellsLDL accumulationMiceConnexin 43-mediated neurovascular interactions regulate neurogenesis in the adult brain subventricular zone
Genet N, Genet G, Chavkin N, Paila U, Fang J, Vasavada H, Goldberg J, Acharya B, Bhatt N, Baker K, McDonnell S, Huba M, Sankaranarayanan D, Ma G, Eichmann A, Thomas J, Ffrench-Constant C, Hirschi K. Connexin 43-mediated neurovascular interactions regulate neurogenesis in the adult brain subventricular zone. Cell Reports 2023, 42: 112371. PMID: 37043357, PMCID: PMC10564973, DOI: 10.1016/j.celrep.2023.112371.Peer-Reviewed Original ResearchConceptsSubventricular zoneEndothelial cellsNSC proliferationNSC quiescenceAdult brain subventricular zoneBlood-brain barrierBrain subventricular zoneStem cell therapyNeural stem cell nicheNeurovascular interactionsNeuroblast generationAdult brainSingle-cell RNA sequencingNeurodegenerative disordersChannel-independent mannerCell therapySVZ-NSCsConnexin 43Expression of genesERK activationNSC regulationNSC behaviorRNA sequencingCx43Proliferation
2014
Emergence of Endothelial Cells During Vascular Development
Eichmann A, Pardanaud L. Emergence of Endothelial Cells During Vascular Development. 2014, 3-23. DOI: 10.1007/978-2-8178-0466-8_1.Peer-Reviewed Original Research
2011
Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis
Calvo CF, Fontaine RH, Soueid J, Tammela T, Makinen T, Alfaro-Cervello C, Bonnaud F, Miguez A, Benhaim L, Xu Y, Barallobre MJ, Moutkine I, Lyytikkä J, Tatlisumak T, Pytowski B, Zalc B, Richardson W, Kessaris N, Garcia-Verdugo JM, Alitalo K, Eichmann A, Thomas JL. Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis. Genes & Development 2011, 25: 831-844. PMID: 21498572, PMCID: PMC3078708, DOI: 10.1101/gad.615311.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedEnzyme-Linked Immunosorbent AssayImmunohistochemistryLymphangiogenesisMiceMice, Mutant StrainsMicroscopy, Electron, TransmissionNeovascularization, PhysiologicNeural Stem CellsNeurogenesisOligonucleotide Array Sequence AnalysisReverse Transcriptase Polymerase Chain ReactionVascular Endothelial Growth Factor Receptor-3ConceptsNeural stem cellsSubventricular zoneVEGF receptorsNeural cellsVEGFR-3Vascular endothelial growth factor (VEGF) familyEndothelial growth factor familyVascular endothelial growth factor receptor 3VEGFR-3 expressionMultipotent neural stem cellsCapillary endothelial cellsGrowth factor receptor 3Overexpression of VEGFGrowth factor familyAdult neurogenesisSVZ neurogenesisReporter miceReceptor 3NeurogenesisNeurodegenerative diseasesConditional deletionEndothelial cellsGrowth factorLigand VEGFInducible deletionRobo4 Maintains Vessel Integrity and Inhibits Angiogenesis by Interacting with UNC5B
Koch AW, Mathivet T, Larrivée B, Tong RK, Kowalski J, Pibouin-Fragner L, Bouvrée K, Stawicki S, Nicholes K, Rathore N, Scales SJ, Luis E, del Toro R, Freitas C, Bréant C, Michaud A, Corvol P, Thomas JL, Wu Y, Peale F, Watts RJ, Tessier-Lavigne M, Bagri A, Eichmann A. Robo4 Maintains Vessel Integrity and Inhibits Angiogenesis by Interacting with UNC5B. Developmental Cell 2011, 20: 33-46. PMID: 21238923, DOI: 10.1016/j.devcel.2010.12.001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, BlockingBlood VesselsCapillary PermeabilityEnzyme ActivationHumansLigandsMiceModels, BiologicalNeovascularization, PathologicNerve Tissue ProteinsNetrin ReceptorsProtein BindingReceptors, Cell SurfaceReceptors, ImmunologicRetinal VesselsSignal TransductionSrc-Family KinasesSus scrofaVascular Endothelial Growth Factor AConceptsProtein-protein interaction screenVascular endothelial growth factorFunction-blocking monoclonal antibodiesInteraction screenNovel functionGuidance receptorsExtracellular domainNetrin receptorsReceptor familyVessel integrityReceptor interactionInhibits angiogenesisRobo4Unexpected interactionsGrowth factorEndothelial cellsUNC5BVascular integrityEndothelial growth factorAngiogenesisIncreases angiogenesisReceptorsMonoclonal antibodiesIntegrityProtein
2010
Regulation of blood vessel patterning and guidance
Eichmann A. Regulation of blood vessel patterning and guidance. The FASEB Journal 2010, 24: 62.3-62.3. DOI: 10.1096/fasebj.24.1_supplement.62.3.Peer-Reviewed Original ResearchVertebrate embryonic developmentBlood vessel patterningLigand-receptor interactionsKey ligand-receptor interactionsVertebrate embryosVessel patterningZebrafish embryosPrimitive tubeGrowth factor gradientsEmbryonic developmentMesodermal cellsMajor axial vesselsMolecular mechanismsStereotyped architectureVascular developmentVascular systemSimilar branching patternsFactor gradientsCardinal veinEmbryosPrimitive vesselsBranched networkPattern formationEndothelial cellsHemodynamic forces
2008
Regulation of blood vessel patterning and branching
Eichmann A. Regulation of blood vessel patterning and branching. The FASEB Journal 2008, 22: 391.2-391.2. DOI: 10.1096/fasebj.22.1_supplement.391.2.Peer-Reviewed Original ResearchMatrix-bound vascular endothelial growth factorVertebrate vascular systemBlood vessel patterningAxon guidance cue netrin-1Endothelial tip cellsAxonal growth conesVessel morphogenesisVessel patterningGuidance cue netrin-1Tip cellsSpecialized endothelial cellsEndothelial cellsNegative regulatorPathological angiogenesisGrowth conesUNC5B receptorDelta-like4Vessel branchingGrowth factorBranched networkVascular endothelial growth factorNetrin-1Endothelial growth factorVascular systemCellsVasculogenesis and Angiogenesis in Development
Eichmann A, Bouvrée K, Pardanaud L. Vasculogenesis and Angiogenesis in Development. 2008, 31-45. DOI: 10.1007/978-3-540-33177-3_2.Peer-Reviewed Original Research
2007
Molecular mechanisms controling vessel branching and morphogenesis
Eichmann A. Molecular mechanisms controling vessel branching and morphogenesis. The FASEB Journal 2007, 21: a197-a197. DOI: 10.1096/fasebj.21.5.a197-b.Peer-Reviewed Original ResearchMatrix-bound vascular endothelial growth factorVertebrate vascular systemAxon guidance cue netrin-1Endothelial tip cellsVessel branchingAxonal growth conesVessel morphogenesisGuidance cue netrin-1Tip cellsSpecialized endothelial cellsEndothelial cellsNegative regulatorMolecular mechanismsPathological angiogenesisGrowth conesUNC5B receptorMorphogenesisDelta-like4Growth factorBranched networkVascular endothelial growth factorNetrin-1Vascular systemEndothelial growth factorCells
2005
Control of arterial branching morphogenesis in embryogenesis: go with the flow
le Noble F, Fleury V, Pries A, Corvol P, Eichmann A, Reneman R. Control of arterial branching morphogenesis in embryogenesis: go with the flow. Cardiovascular Research 2005, 65: 619-628. PMID: 15664388, DOI: 10.1016/j.cardiores.2004.09.018.Peer-Reviewed Original ResearchConceptsBranching morphogenesisArterial-venous differentiationPatterning mechanismsMorphological eventsEmbryogenesisMorphogenesisEmbryonic arteriesEmbryo survivalPivotal roleEndothelial cellsVascular systemVivo observationsRemodeling processPre-existing collateralsProminent roleEmbryo-fetal developmentDifferentiationRegulationRoleIschemic diseasesPlasticityArterial growthDisconnection processNew strategyTrees
2004
The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system
Lu X, le Noble F, Yuan L, Jiang Q, de Lafarge B, Sugiyama D, Bréant C, Claes F, De Smet F, Thomas JL, Autiero M, Carmeliet P, Tessier-Lavigne M, Eichmann A. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 2004, 432: 179-186. PMID: 15510105, DOI: 10.1038/nature03080.Peer-Reviewed Original ResearchConceptsNetrin receptor UNC5BEndothelial tip cell filopodiaTip cell filopodiaReceptor UNC5BEndothelial tip cellsVascular systemNetrin-1aTip cellsEndothelial cellsProper wiringAxon guidanceCell filopodiaNetrin receptorsGuidance eventsFilopodial retractionMorphogenesisUNC5BVessel branchingAberrant extensionAnatomical similaritiesNetrin-1CellsZebrafishGenesGuidance functionRetinoic acid controls blood vessel formation by modulating endothelial and mural cell interaction via suppression of Tie2 signaling in vascular progenitor cells
Suzuki Y, Komi Y, Ashino H, Yamashita J, Inoue J, Yoshiki A, Eichmann A, Amanuma H, Kojima S. Retinoic acid controls blood vessel formation by modulating endothelial and mural cell interaction via suppression of Tie2 signaling in vascular progenitor cells. Blood 2004, 104: 166-169. PMID: 15026310, DOI: 10.1182/blood-2003-09-3293.Peer-Reviewed Original ResearchConceptsVascular progenitor cellsAll-trans retinoic acidChicken chorioallantoic membraneEndothelial cellsTie2 signalingProgenitor cellsBlood vessel formationMural cellsEpithelial layerExpression of angiopoietin-2Vessel formationRetinoic acidImpaired vascular remodelingImpaired branchingAngiopoietin-2Ang-1Vascular remodelingRo41-5253Cell interactionsMural cell interactions
2001
Development of the avian lymphatic system
Wilting J, Papoutsi M, Othman‐Hassan K, Rodriguez‐Niedenführ M, Pröls F, Tomarev S, Eichmann A. Development of the avian lymphatic system. Microscopy Research And Technique 2001, 55: 81-91. PMID: 11596153, DOI: 10.1002/jemt.1159.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBirdsChick EmbryoEndothelial Growth FactorsEndothelium, LymphaticHomeodomain ProteinsImmunohistochemistryIn Situ HybridizationLymphatic SystemQuailReceptor Protein-Tyrosine KinasesReceptors, Growth FactorReceptors, Vascular Endothelial Growth FactorTumor Suppressor ProteinsVascular Endothelial Growth Factor CConceptsBlood vascular endothelial cellsLymph sacsLymphatic endothelial cellsEndothelial cellsLymphatic endotheliumEndogenous origin of the lymphatics in the avian chorioallantoic membrane
Papoutsi M, Tomarev S, Eichmann A, Pröls F, Christ B, Wilting J. Endogenous origin of the lymphatics in the avian chorioallantoic membrane. Developmental Dynamics 2001, 222: 238-251. PMID: 11668601, DOI: 10.1002/dvdy.1187.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationChick EmbryoChickensChimeraChorionEndothelial Growth FactorsEndothelium, LymphaticGene Expression Regulation, DevelopmentalHomeodomain ProteinsMesodermQuailReceptor Protein-Tyrosine KinasesReceptors, Growth FactorTumor Suppressor ProteinsVascular Endothelial Growth Factor CVascular Endothelial Growth Factor Receptor-3ConceptsVascular endothelial growth factor receptor 3Allantoic budSplanchnic mesodermAllantoic mesodermHematopoietic cellsMesenchymal cellsQuail embryosChorioallantoic membraneEndothelial cellsGrowth factor receptor 3Intraembryonic sitesBlood islandsMesodermAllantoic epitheliumEmbryosEndothelial networksBudsAvian chorioallantoic membraneDay 4 embryosImportant functionsMRNA probesLymphangiogenic potentialLymphatic endotheliumCAM developmentChick embryos