2019
Cell-mediated delivery of VEGF modified mRNA enhances blood vessel regeneration and ameliorates murine critical limb ischemia
Yu Z, Witman N, Wang W, Li D, Yan B, Deng M, Wang X, Wang H, Zhou G, Liu W, Sahara M, Cao Y, Fritsche-Danielson R, Zhang W, Fu W, Chien K. Cell-mediated delivery of VEGF modified mRNA enhances blood vessel regeneration and ameliorates murine critical limb ischemia. Journal Of Controlled Release 2019, 310: 103-114. PMID: 31425721, DOI: 10.1016/j.jconrel.2019.08.014.Peer-Reviewed Original Research
2015
Response to the letter by Guo et al., “Endothelial progenitor cells therapy: From bench to bedside”
Minami Y, Ikutomi M, Sahara M. Response to the letter by Guo et al., “Endothelial progenitor cells therapy: From bench to bedside”. International Journal Of Cardiology 2015, 205: 97-98. PMID: 26730839, DOI: 10.1016/j.ijcard.2015.12.026.Commentaries, Editorials and LettersAngiogenic potential of early and late outgrowth endothelial progenitor cells is dependent on the time of emergence
Minami Y, Nakajima T, Ikutomi M, Morita T, Komuro I, Sata M, Sahara M. Angiogenic potential of early and late outgrowth endothelial progenitor cells is dependent on the time of emergence. International Journal Of Cardiology 2015, 186: 305-314. PMID: 25838182, DOI: 10.1016/j.ijcard.2015.03.166.Peer-Reviewed Original ResearchConceptsLate outgrowth endothelial progenitor cellsHuman peripheral blood mononuclear cellsLate-outgrowth EPCsEndothelial progenitor cellsEPC subpopulationsHigh angiogenic potentialAngiogenic potentialEarly outgrowth endothelial progenitor cellsDay 17Day 10Unilateral hindlimb ischemia surgeryPeripheral blood mononuclear cellsOutgrowth endothelial progenitor cellsTherapeutic angiogenic potentialProgenitor cellsBlood flow recoveryBlood mononuclear cellsTube formation capabilityVivo therapeutic efficacyIschemic legCollateral formationMononuclear cellsIschemia surgeryParacrine effectsDay 3
2011
The ATP-Binding Cassette Transporter ABCG2 Protects Against Pressure Overload–Induced Cardiac Hypertrophy and Heart Failure by Promoting Angiogenesis and Antioxidant Response
Higashikuni Y, Sainz J, Nakamura K, Takaoka M, Enomoto S, Iwata H, Tanaka K, Sahara M, Hirata Y, Nagai R, Sata M. The ATP-Binding Cassette Transporter ABCG2 Protects Against Pressure Overload–Induced Cardiac Hypertrophy and Heart Failure by Promoting Angiogenesis and Antioxidant Response. Arteriosclerosis Thrombosis And Vascular Biology 2011, 32: 654-661. PMID: 22116099, DOI: 10.1161/atvbaha.111.240341.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAntioxidantsATP Binding Cassette Transporter, Subfamily G, Member 2ATP-Binding Cassette TransportersCells, CulturedDisease Models, AnimalEndothelial CellsGenotypeGlutathioneHeart FailureHindlimbHumansHypertrophy, Left VentricularIschemiaMaleMiceMice, KnockoutMuscle, SkeletalMyocytes, CardiacNeoplasm ProteinsNeovascularization, PhysiologicOxidative StressPhenotypeRatsRats, WistarRNA InterferenceTime FactorsTransfectionVentricular FunctionVentricular RemodelingConceptsTransverse aortic constrictionWild-type micePressure overload-induced cardiac hypertrophyMicrovascular endothelial cellsOverload-induced cardiac hypertrophyCardiac hypertrophyHeart failureEndothelial cellsCassette transporter subfamily G member 2Exaggerated cardiac hypertrophyAntioxidant responseG member 2Tissue defense mechanismsSuperoxide dismutase mimeticCassette transporter ABCG2Cardiac dysfunctionImportant endogenous antioxidantPressure overloadVentricular remodelingAortic constrictionFunctional impairmentATP-Binding Cassette Transporter ABCG2Cardiomyocyte hypertrophyImpaired angiogenesisDismutase mimetic
2010
A Phosphodiesterase-5 Inhibitor Vardenafil Enhances Angiogenesis Through a Protein Kinase G-Dependent Hypoxia-Inducible Factor-1/Vascular Endothelial Growth Factor Pathway
Sahara M, Sata M, Morita T, Nakajima T, Hirata Y, Nagai R. A Phosphodiesterase-5 Inhibitor Vardenafil Enhances Angiogenesis Through a Protein Kinase G-Dependent Hypoxia-Inducible Factor-1/Vascular Endothelial Growth Factor Pathway. Arteriosclerosis Thrombosis And Vascular Biology 2010, 30: 1315-1324. PMID: 20413734, DOI: 10.1161/atvbaha.109.201327.Peer-Reviewed Original ResearchMeSH KeywordsAngiogenesis Inducing AgentsAnimalsCapillariesCell HypoxiaCell MovementCells, CulturedCollateral CirculationCyclic GMPCyclic GMP-Dependent Protein KinasesCyclic Nucleotide Phosphodiesterases, Type 5Disease Models, AnimalEndothelial CellsGreen Fluorescent ProteinsHindlimbHumansHypoxia-Inducible Factor 1, alpha SubunitImidazolesIschemiaMaleMiceMice, Inbred C3HMice, Inbred C57BLMice, KnockoutMice, TransgenicMuscle, SkeletalNeovascularization, PhysiologicNitric Oxide Synthase Type IIIPhosphodiesterase 5 InhibitorsPhosphodiesterase InhibitorsPiperazinesRecovery of FunctionRegional Blood FlowRNA InterferenceSignal TransductionStem CellsSulfonesTime FactorsTransfectionTriazinesVardenafil DihydrochlorideVascular Endothelial Growth Factor AConceptsEndothelial progenitor cellsVascular endothelial growth factor (VEGF) pathwayEndothelial growth factor pathwayIschemia-induced angiogenesisGrowth factor pathwaysIschemic muscleMobilization of EPCsSca-1/flkFactor pathwaySoluble guanylate cyclase inhibitorEndothelial nitric oxide synthasePhosphodiesterase-5 inhibitor vardenafilRight femoral arteryBlood flow recoveryEffect of vardenafilPhosphodiesterase-5 inhibitionUnilateral hindlimb ischemiaGuanylate cyclase inhibitorVascular endothelial growth factorNitric oxide synthaseUpregulated protein expressionProtein kinase G inhibitorIschemic cardiovascular diseaseCapillary-like tube formationEndothelial growth factor