2017
Response to “Comment to the article ‘Diverse contribution of bone marrow-derived late-outgrowth endothelial progenitor cells to vascular repair under pulmonary arterial hypertension and arterial neointimal formation’”
Ikutomi M, Minami Y, Sahara M. Response to “Comment to the article ‘Diverse contribution of bone marrow-derived late-outgrowth endothelial progenitor cells to vascular repair under pulmonary arterial hypertension and arterial neointimal formation’”. Journal Of Molecular And Cellular Cardiology 2017, 103: 137-138. PMID: 28109765, DOI: 10.1016/j.yjmcc.2017.01.010.Commentaries, Editorials and Letters
2015
Diverse contribution of bone marrow-derived late-outgrowth endothelial progenitor cells to vascular repair under pulmonary arterial hypertension and arterial neointimal formation
Ikutomi M, Sahara M, Nakajima T, Minami Y, Morita T, Hirata Y, Komuro I, Nakamura F, Sata M. Diverse contribution of bone marrow-derived late-outgrowth endothelial progenitor cells to vascular repair under pulmonary arterial hypertension and arterial neointimal formation. Journal Of Molecular And Cellular Cardiology 2015, 86: 121-135. PMID: 26231083, DOI: 10.1016/j.yjmcc.2015.07.019.Peer-Reviewed Original ResearchConceptsPulmonary arterial hypertensionEndothelial progenitor cellsLate outgrowth endothelial progenitor cellsEarly endothelial progenitor cellsFemoral arteryVascular repairEPC subpopulationsArterial hypertensionArterial neointimal formationProgenitor cellsBM mononuclear cellsNeointimal lesion formationFisher 344 ratsEPC treatmentEnhanced proliferation potentialPulmonary arteriolesPulmonary arteryPulmonary vasculatureEndovascular injuryMononuclear cellsVascular diseaseSystemic arteriesTherapeutic effectNeointimal formationInflammatory genes
2012
Nicorandil Attenuates Monocrotaline-Induced Vascular Endothelial Damage and Pulmonary Arterial Hypertension
Sahara M, Sata M, Morita T, Hirata Y, Nagai R. Nicorandil Attenuates Monocrotaline-Induced Vascular Endothelial Damage and Pulmonary Arterial Hypertension. PLOS ONE 2012, 7: e33367. PMID: 22479390, PMCID: PMC3316574, DOI: 10.1371/journal.pone.0033367.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntihypertensive AgentsApoptosisBlotting, WesternCaspase 3Cells, CulturedDrug Therapy, CombinationEndothelium, VascularEnzyme InhibitorsFamilial Primary Pulmonary HypertensionGlyburideHuman Umbilical Vein Endothelial CellsHumansHypertension, PulmonaryInjections, IntraperitonealMaleMAP Kinase Signaling SystemMonocrotalineNG-Nitroarginine Methyl EsterNicorandilPhosphatidylinositol 3-KinasesProto-Oncogene Proteins c-aktRandom AllocationRatsRats, Sprague-DawleySignal TransductionVentricular PressureConceptsRight ventricular systolic pressurePulmonary arterial hypertensionHuman umbilical vein endothelial cellsVascular endothelial damageMCT injectionArterial hypertensionEndothelial damageNitro-L-arginine methyl esterNitric oxide synthase inhibitorBeneficial effectsEndothelial NOS expressionVentricular systolic pressureVehicle-treated groupChannel blocker glibenclamideOxide synthase inhibitorChannel opener nicorandilSprague-Dawley ratsCaspase-3 expressionAnti-apoptotic effectsUmbilical vein endothelial cellsPromising therapeutic potentialBcl-2 expressionAnti-apoptotic factorsNicorandil administrationVein endothelial cells
2007
Diverse Contribution of Bone Marrow–Derived Cells to Vascular Remodeling Associated With Pulmonary Arterial Hypertension and Arterial Neointimal Formation
Sahara M, Sata M, Morita T, Nakamura K, Hirata Y, Nagai R. Diverse Contribution of Bone Marrow–Derived Cells to Vascular Remodeling Associated With Pulmonary Arterial Hypertension and Arterial Neointimal Formation. Circulation 2007, 115: 509-517. PMID: 17242277, DOI: 10.1161/circulationaha.106.655837.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedArteriolesBone Marrow CellsBone Marrow TransplantationCapillariesCell DifferentiationDisease Models, AnimalFemoral ArteryGreen Fluorescent ProteinsHypertension, PulmonaryMaleMonocrotalinePneumonectomyPulmonary ArteryPulmonary EmbolismRatsRats, Sprague-DawleyThrombosisTunica IntimaVentricular Dysfunction, RightConceptsPulmonary arterial hypertensionArterial neointimal formationBM-derived cellsPulmonary arterial remodelingArterial hypertensionPulmonary arteriolesProtein-positive cellsSmooth muscle cellsGreen fluorescent protein-positive cellsArterial remodelingFemoral arteryBM cellsNeointimal formationBone marrowMonocrotaline-induced pulmonary arterial hypertensionRight ventricular systolic pressureMuscle cellsVascular Remodeling AssociatedVentricular systolic pressureGreen fluorescent protein (GFP) transgenic ratsSmooth muscle-like cellsSprague-Dawley ratsWire-injured femoral arteriesMuscle-like cellsPulmonary hypertension
2006
New Insights in the Treatment Strategy for Pulmonary Arterial Hypertension
Sahara M, Takahashi T, Imai Y, Nakajima T, Yao A, Morita T, Hirata Y, Nagai R. New Insights in the Treatment Strategy for Pulmonary Arterial Hypertension. Cardiovascular Drugs And Therapy 2006, 20: 377-386. PMID: 17124557, DOI: 10.1007/s10557-006-0498-3.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAnticoagulantsAntihypertensive AgentsCalcium Channel BlockersDiureticsDrug Therapy, CombinationHumansHypertension, PulmonaryMaleMiddle AgedNicorandilNitric Oxide DonorsOxygen Inhalation TherapyPhosphodiesterase InhibitorsPiperazinesPurinesPyridazinesSildenafil CitrateSulfonesVasodilator AgentsConceptsPulmonary arterial hypertensionFunctional class IVArterial hypertensionNew York Heart Association functional class IVNYHA functional class IVPhosphodiesterase type 5 inhibitorsClass IVIntravenous prostacyclin therapyOral combination therapyRational pharmacological therapyFirst-line therapyPhosphodiesterase type 3 inhibitorPrimary pulmonary hypertensionEndothelin receptor antagonistsCurrent treatment optionsCalcium channel blockersLong-term efficacyType 5 inhibitorsNovel therapeutic approachesLong-term survivalProstacyclin therapyExercise tolerancePulmonary hypertensionMale patientsPharmacological therapy