2024
Retinal Pigmented Epithelium and the Outer Blood-Retinal Barrier
Rizzolo L. Retinal Pigmented Epithelium and the Outer Blood-Retinal Barrier. 2024 DOI: 10.1016/b978-0-443-13820-1.00020-7.Peer-Reviewed Original ResearchRetinal pigment epitheliumOuter blood-retinal barrierBlood-retinal barrierNeurosensory retinaClaudin-19Pigment epitheliumTight junctionsRetinal pigment epithelium functionHuman retinal pigment epitheliumBarrier functionRetinal barrierCo-culture systemClaudin familyParacellular spaceFamily of transmembrane proteinsEpitheliumChoriocapillarisCo-cultureCapillary bedClaudinRetinaBidirectional interactionsGene expressionPhysiological functionsTransmembrane proteins
2021
Altered transcriptome and disease-related phenotype emerge only after fibroblasts harvested from patients with age-related macular degeneration are differentiated into retinal pigment epithelium
Cai H, Gong J, Team N, Noggle S, Paull D, Rizzolo LJ, Del Priore LV, Fields MA. Altered transcriptome and disease-related phenotype emerge only after fibroblasts harvested from patients with age-related macular degeneration are differentiated into retinal pigment epithelium. Experimental Eye Research 2021, 207: 108576. PMID: 33895162, DOI: 10.1016/j.exer.2021.108576.Peer-Reviewed Original ResearchConceptsAge-related macular degenerationRetinal pigment epitheliumMacular degenerationPigment epitheliumInduced pluripotent stem cellsEtiology of AMDMitochondrial dysfunctionAge-matched controlsNovel therapeutic targetTranscriptome of fibroblastsAMD patientsNormal donorsFibroblasts of patientsTherapeutic targetPatientsMore studiesAltered transcriptomeDisease phenotypeSignificant differencesCell linesMitochondrial functionDysfunctionOriginal fibroblastsDistinct transcriptomesDegeneration
2020
Partially Differentiated Neuroretinal Cells Promote Maturation of the Retinal Pigment Epithelium
Singh D, Chen X, Xia T, Ghiassi-Nejad M, Tainsh L, Adelman RA, Rizzolo LJ. Partially Differentiated Neuroretinal Cells Promote Maturation of the Retinal Pigment Epithelium. Investigative Ophthalmology & Visual Science 2020, 61: 9-9. PMID: 33151282, PMCID: PMC7671856, DOI: 10.1167/iovs.61.13.9.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumRetinal progenitor cellsTransepithelial electrical resistanceNeurosensory retinaPigment epitheliumHuman fetal retinal pigment epitheliumRecoverin-positive cellsFetal retinal pigment epitheliumGanglion cell layerAbility of RPERPE signature genesRed/green opsinTranswell filter insertsStem cellsQuantitative RT-PCRGlial markersHuman stem cellsExpression of rhodopsinInterneuron markersBipolar cellsRetinal culturesRetinaRT-PCRProgenitor cellsPresumptive photoreceptorsUnstimulated, Serum-free Cultures of Retinal Pigment Epithelium Excrete Large Mounds of Drusen-like Deposits
Chen X, Singh D, Adelman RA, Rizzolo LJ. Unstimulated, Serum-free Cultures of Retinal Pigment Epithelium Excrete Large Mounds of Drusen-like Deposits. Current Eye Research 2020, 45: 1390-1394. PMID: 32202447, DOI: 10.1080/02713683.2020.1740744.Peer-Reviewed Original ResearchMeSH KeywordsActinsApolipoproteins ECalciumCell Culture TechniquesCell LineCell ProliferationCoculture TechniquesCulture Media, Serum-FreeElectric ImpedanceHumansInduced Pluripotent Stem CellsLipid MetabolismRetinal DrusenRetinal Pigment EpitheliumStem CellsTight JunctionsTissue Inhibitor of Metalloproteinase-3VitronectinConceptsRetinal pigment epithelium
2019
Stem cell-derived retinal pigment epithelium from patients with age-related macular degeneration exhibit reduced metabolism and matrix interactions
Gong J, Cai H, Team N, Noggle S, Paull D, Rizzolo LJ, Del Priore LV, Fields MA. Stem cell-derived retinal pigment epithelium from patients with age-related macular degeneration exhibit reduced metabolism and matrix interactions. Stem Cells Translational Medicine 2019, 9: 364-376. PMID: 31840941, PMCID: PMC7031648, DOI: 10.1002/sctm.19-0321.Peer-Reviewed Original ResearchConceptsExtracellular matrixIPSC-RPEMetabolic-related pathwaysComplement immune systemTransepithelial electrical resistanceRod photoreceptor outer segmentsPluripotent stem cellsAged Bruch's membraneCell-specific morphologyObserved phenotypeAltered extracellular matrixControl iPSCsMitochondrial respirationMitochondrial functionMatrix interactionsCell attachmentStem cellsTranscriptomePhotoreceptor outer segmentsDistinct clustersComplement genesRetinal pigment epitheliumGenesIPSCsMembraneDisease-associated mutations of claudin-19 disrupt retinal neurogenesis and visual function
Wang SB, Xu T, Peng S, Singh D, Ghiassi-Nejad M, Adelman RA, Rizzolo LJ. Disease-associated mutations of claudin-19 disrupt retinal neurogenesis and visual function. Communications Biology 2019, 2: 113. PMID: 30937396, PMCID: PMC6433901, DOI: 10.1038/s42003-019-0355-0.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumClaudin-19Retinal neurogenesisP1 waveOuter nuclear layerRPE signature genesARPE19 cell lineOcular involvementKidney diseaseVisual functionFamilial hypomagnesaemiaNuclear layerBipolar cellsNewborn miceOcular diseasesPigment epitheliumRetinal isomeraseDiseaseMiceHuman induced pluripotent cellsRetinal differentiationSignature genesCell linesNeurogenesisInduced pluripotent cells
2017
A biodegradable scaffold enhances differentiation of embryonic stem cells into a thick sheet of retinal cells
Singh D, Wang SB, Xia T, Tainsh L, Ghiassi-Nejad M, Xu T, Peng S, Adelman RA, Rizzolo LJ. A biodegradable scaffold enhances differentiation of embryonic stem cells into a thick sheet of retinal cells. Biomaterials 2017, 154: 158-168. PMID: 29128844, DOI: 10.1016/j.biomaterials.2017.10.052.Peer-Reviewed Original ResearchConceptsRetinal degenerationNeurosensory retinaRetinal cellsHost retinal pigment epitheliumStem cellsOuter nuclear layerRetinal pigment epitheliumRetinal cell typesElaborate arborsQuantitative RT-PCRLeading causeImmune responseNuclear layerMouse modelPigment epitheliumSubretinal spaceForebrain cellsMinimal immune responseTherapeutic agentsRetinal laminationRT-PCRDegenerationRetinaRetinal organoidsConfocal immunocytochemistryEffects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium
Xia T, Rizzolo LJ. Effects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium. Vision Research 2017, 139: 72-81. PMID: 28347688, DOI: 10.1016/j.visres.2017.02.006.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsBlood-retinal barrierRetinal pigment epitheliumOuter blood-retinal barrierRPE barrier functionDiabetic retinopathyBarrier functionPigment epitheliumInner blood-retinal barrierEffect of diabetesRetinal endothelial cellsMicrovascular complicationsDiabetes mellitusNeurosensory retinaRetinal healthParacellular spaceRetinopathyMetabolic processingEndothelial cellsEarly effectsDiabetesActive transportTight junctionsCulture modelEpitheliumTransepithelial movementVascular Biology: RPE Barrier☆
Rizzolo L, Ghiassi-Nejad M, Tainsh L. Vascular Biology: RPE Barrier☆. 2017 DOI: 10.1016/b978-0-12-809324-5.01510-8.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2013
Engineering a Blood-Retinal Barrier With Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium: Transcriptome and Functional Analysis
Peng S, Gan G, Qiu C, Zhong M, An H, Adelman RA, Rizzolo LJ. Engineering a Blood-Retinal Barrier With Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium: Transcriptome and Functional Analysis. Stem Cells Translational Medicine 2013, 2: 534-544. PMID: 23734062, PMCID: PMC3697821, DOI: 10.5966/sctm.2012-0134.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumBlood-retinal barrierHuman retinal pigment epitheliumPigment epitheliumHuman fetal retinal pigment epitheliumOuter blood-retinal barrierTight junctionsFetal retinal pigment epitheliumEmbryonic stem cell-derived retinal pigment epitheliumAdult retinal pigment epitheliumQuantitative reverse transcription polymerase chain reactionMaturation of hESCReverse transcription-polymerase chain reactionTranscription-polymerase chain reactionHuman embryonic stem cell-derived retinal pigment epitheliumStem cell-derived retinal pigment epitheliumRPE replacement therapyPanel of genesReplacement therapyAnimal modelsHuman embryonic stem cellsRetinal degenerationRPE functionSerum-free mediumHuman retina
2011
Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium
Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Progress In Retinal And Eye Research 2011, 30: 296-323. PMID: 21704180, DOI: 10.1016/j.preteyeres.2011.06.002.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumOuter retinaPigment epitheliumTight junctionsBarrier functionOuter blood-retinal barrierBlood-retinal barrierHuman retinal pigment epitheliumBlood-tissue barriersTight junctional proteinsPhotoreceptor layerNeural retinaMetabolic alterationsRetinaEpitheliumClaudin compositionTransepithelial diffusionStem cellsJunctional proteinsClaudinsClaudin-19 and the Barrier Properties of the Human Retinal Pigment Epithelium
Peng S, Rao VS, Adelman RA, Rizzolo LJ. Claudin-19 and the Barrier Properties of the Human Retinal Pigment Epithelium. Investigative Ophthalmology & Visual Science 2011, 52: 1392-1403. PMID: 21071746, PMCID: PMC3101667, DOI: 10.1167/iovs.10-5984.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsCells, CulturedClaudinsElectric ImpedanceFluorescent Antibody Technique, IndirectGene SilencingGestational AgeHumansImmunoblottingMembrane ProteinsOccludinPermeabilityPolyethylene GlycolsRetinal Pigment EpitheliumReverse Transcriptase Polymerase Chain ReactionRNA, MessengerRNA, Small InterferingTight JunctionsConceptsRetinal pigment epitheliumTransepithelial electrical resistanceHuman retinal pigment epitheliumHuman fetal RPECultured human fetal retinal pigment epitheliumPigment epitheliumClaudin-19Retinal sideHuman fetal retinal pigment epitheliumSpread of edemaFetal retinal pigment epitheliumFetal human retinal pigment epitheliumEffect of serumTight junctionsRPE permeabilityQuantitative RT-PCRChoroidal capillariesSubpopulation of cellsClaudin-1RPE barrierClaudin-3RPE tight junctionsRT-PCREpitheliumSerum
2010
Retinal Pigmented Epithelium Barrier
Rizzolo L. Retinal Pigmented Epithelium Barrier. 2010, 101-108. DOI: 10.1016/b978-0-12-374203-2.00132-9.Chapters
2008
Glucose Transporters in Retinal Pigment Epithelium Development
Rizzolo L. Glucose Transporters in Retinal Pigment Epithelium Development. Ophthalmology Research 2008, 185-199. DOI: 10.1007/978-1-59745-375-2_10.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsRetinal pigment epitheliumNeural retinaOuter blood-retinal barrierRetinal pigment epithelium developmentBlood-retinal barrierBlood-brain barrierFormation of fenestraeGlucose transporterTight junctionsExpression of GLUT1Systemic endotheliumChoroidal capillariesPigment epitheliumGLUT family membersBasal levelsRetinaEpithelium developmentTranscellular transportTransepithelial transportChoriocapillarisEndothelium
2007
Development and Role of Tight Junctions in the Retinal Pigment Epithelium
Rizzolo LJ. Development and Role of Tight Junctions in the Retinal Pigment Epithelium. International Review Of Cytology 2007, 258: 195-234. PMID: 17338922, DOI: 10.1016/s0074-7696(07)58004-6.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumPigment epitheliumNeural retinaTight junctionsOuter blood-retinal barrierBlood-retinal barrierSlower time courseEpitheliumCell proliferationTissue-specific propertiesTransepithelial diffusionTime courseRetinaParacellular diffusionPhysiological roleEpithelial monolayersSolid tissuesParacellular spaceApical surfaceCulture system
2006
Expression of JAM-A, AF-6, PAR-3 and PAR-6 during the assembly and remodeling of RPE tight junctions
Luo Y, Fukuhara M, Weitzman M, Rizzolo LJ. Expression of JAM-A, AF-6, PAR-3 and PAR-6 during the assembly and remodeling of RPE tight junctions. Brain Research 2006, 1110: 55-63. PMID: 16859655, DOI: 10.1016/j.brainres.2006.06.059.Peer-Reviewed Original Research
2002
Claudin 5 Is Transiently Expressed During the Development of the Retinal Pigment Epithelium
Kojima S, Rahner C, Peng S, Rizzolo L. Claudin 5 Is Transiently Expressed During the Development of the Retinal Pigment Epithelium. The Journal Of Membrane Biology 2002, 186: 81-88. PMID: 11944085, DOI: 10.1007/s00232-001-0137-7.Peer-Reviewed Original ResearchConceptsReverse transcriptase-polymerase chain reactionRetinal pigment epitheliumClaudin-5Chick retinal pigment epitheliumPigment epitheliumTranscriptase-polymerase chain reactionEmbryonic day 14Tight junctionsSemiquantitative RT-PCRExpression of claudinsEmbryonic day 10Northern blottingNeural retinaDay 14Semi-quantitative RT-PCRDay 10Claudin-3RPE developmentPeak levelsDay 7 embryosChoroid layerPrimary culturesChain reactionEpitheliumBlotting
2000
Differential regulation of tight junction permeability during development of the retinal pigment epithelium
Ban Y, Rizzolo L. Differential regulation of tight junction permeability during development of the retinal pigment epithelium. American Journal Of Physiology - Cell Physiology 2000, 279: c744-c750. PMID: 10942725, DOI: 10.1152/ajpcell.2000.279.3.c744.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumPigment epitheliumBlood-brain barrierEmbryonic ageTight junctionsTight junction permeabilityLow calcium mediumRPE developmentAcetylneuraminic acidMannitol permeabilityJunction permeabilityEpithelial regionsCulture modelDifferent subpopulationsParacellular diffusionEpitheliumDifferential regulationAgeOrder of permeationTwo secreted retinal factors regulate different stages of development of the outer blood–retinal barrier
Ban Y, Wilt S, Rizzolo L. Two secreted retinal factors regulate different stages of development of the outer blood–retinal barrier. Brain Research 2000, 119: 259-267. PMID: 10675776, DOI: 10.1016/s0165-3806(99)00183-2.Peer-Reviewed Original ResearchMeSH KeywordsAdrenergic AgonistsAnimalsBiological TransportBlood-Brain BarrierCatecholaminesCell FractionationCells, CulturedChick EmbryoChromatography, GelCulture Media, ConditionedDopamine AgonistsElectric ImpedanceEndopeptidasesEye ProteinsIndolesPigment Epithelium of EyeSerotonin Receptor AgonistsTight JunctionsConceptsRetinal pigment epitheliumBlood-retinal barrierTransepithelial electrical resistanceOuter blood-retinal barrierBlood-brain barrierEffects of astrocytesCultured retinal pigment epitheliumChick retinal pigment epitheliumPigment epitheliumNeural retinaRetinal factorsChick retinaRPE barrierRPE cellsRetinaEndothelial regionAstrocytesTight junctionsCulture modelDiffusible factorsDifferent stagesActive factorsJunction developmentMultistep processFactors
1998
Polarization of the Na+, K+-ATPase in Epithelia Derived from the Neuroepithelium
Rizzolo L. Polarization of the Na+, K+-ATPase in Epithelia Derived from the Neuroepithelium. International Review Of Cytology 1998, 185: 195-235. PMID: 9750268, DOI: 10.1016/s0074-7696(08)60152-7.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsProper membrane domainDifferent sorting signalsPolarity mechanismsSorting signalsMembrane domainsMembrane proteinsCortical cytoskeletonCertain environmental stimuliFascinating groupMaintenance signalsApical membraneEnvironmental stimuliIon pumpsProteinBasolateral membraneATPaseYields insightsNeuroepitheliumMembraneCellsCytoskeletonEpitheliumRetinal pigment epitheliumSignalsPigment epithelium