2019
Hearing loss is an early biomarker in APP/PS1 Alzheimer’s disease mice
Liu Y, Fang S, Liu L, Zhu Y, Li C, Chen K, Zhao H. Hearing loss is an early biomarker in APP/PS1 Alzheimer’s disease mice. Neuroscience Letters 2019, 717: 134705. PMID: 31870800, PMCID: PMC7004828, DOI: 10.1016/j.neulet.2019.134705.Peer-Reviewed Original ResearchConceptsAPP/PS1 AD miceDistortion product otoacoustic emissionsAuditory brainstem responseAD miceHearing lossAlzheimer's diseaseDisease miceAPP/PS1 Alzheimer's disease miceAPP/PS1 miceAD mouse modelAlzheimer's disease miceMedial geniculate bodyWild-type littermatesCochlear microphonic recordingsProduct otoacoustic emissionsMonths of ageSpatial learning deficitsPS1 miceUpper brainstemABR thresholdFunction testingGeniculate bodyBrainstem responseLateral lemniscusEarly biomarkers
2017
A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall
Mei L, Chen J, Zong L, Zhu Y, Liang C, Jones R, Zhao H. A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall. Neurobiology Of Disease 2017, 108: 195-203. PMID: 28823936, PMCID: PMC5675824, DOI: 10.1016/j.nbd.2017.08.002.Peer-Reviewed Original ResearchConceptsCochlear lateral wallEndocochlear potentialHearing lossGap junctional functionDeafness mechanismLateral wallHeterozygous miceCx30 mutationsHair cell degenerationHomozygous knockout miceJunctional functionHeterozygous mouse modelGap junctionsOrgan of CortiSame gap junctional plaquesEP reductionFrequent causePathological changesMouse modelKnockout miceReceptor currentsCell degenerationNormal hearingHeterozygous mutationsMiceProgressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing
Zong L, Chen J, Zhu Y, Zhao H. Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing. Biochemical And Biophysical Research Communications 2017, 489: 223-227. PMID: 28552523, PMCID: PMC5555358, DOI: 10.1016/j.bbrc.2017.05.137.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsCochleaConnexin 26ConnexinsGap JunctionsHearing LossMiceMice, KnockoutMice, TransgenicConceptsActive cochlear amplificationHearing lossCochlear amplificationMice ageGap junctionsAge-related hearing lossSignificant hearing lossPostnatal day 25Cochlear gap junctionsAuditory sensory hair cellsSensory hair cellsNonsyndromic hearing lossHigh incidenceOuter pillar cellsDay 25Deiters' cellsConnexin expressionHair cellsConnexin 26Outer hair cell electromotilityHair cell electromotilityPillar cellsPrevious reportsCochleaAge