2017
Hypothesis of K+-Recycling Defect Is Not a Primary Deafness Mechanism for Cx26 (GJB2) Deficiency
Zhao H. Hypothesis of K+-Recycling Defect Is Not a Primary Deafness Mechanism for Cx26 (GJB2) Deficiency. Frontiers In Molecular Neuroscience 2017, 10: 162. PMID: 28603488, PMCID: PMC5445178, DOI: 10.3389/fnmol.2017.00162.Peer-Reviewed Original ResearchHearing lossDeafness mechanismCx26 deficiencyInner ear gap junctionsHair cell degenerationNonsyndromic hearing lossDisruption of permeabilityCongenital deafnessCell degenerationHair cellsHair cell excitationHereditary deafnessCell excitationConnexin26 MutationsGap junctional channelsGap junctionsDevelopmental disordersDeficiencyDeafnessExtracellular spaceReview articleJunctional channelsDegeneration
2015
Cellular and Deafness Mechanisms Underlying Connexin Mutation-Induced Hearing Loss – A Common Hereditary Deafness
Wingard J, Zhao H. Cellular and Deafness Mechanisms Underlying Connexin Mutation-Induced Hearing Loss – A Common Hereditary Deafness. Frontiers In Cellular Neuroscience 2015, 9: 202. PMID: 26074771, PMCID: PMC4448512, DOI: 10.3389/fncel.2015.00202.Peer-Reviewed Original ResearchHearing lossPathological changesDeafness mechanismCongenital deafnessActive cochlear amplificationProgressive hearing lossDetailed cellular mechanismsCochlear hair cellsHair cell degenerationHereditary deafnessConnexin 26 mutationsDistinct pathological changesNon-syndromic hearing lossProfound congenital deafnessAuditory phenotypeHigh incidenceTherapeutic strategiesGap junctional proteinCell degenerationConnexin expressionHair cellsDeafnessCellular mechanismsLate childhoodCx26 mutations
2006
Gap Junctions and Cochlear Homeostasis
Zhao H, Kikuchi T, Ngezahayo A, White T. Gap Junctions and Cochlear Homeostasis. The Journal Of Membrane Biology 2006, 209: 177. PMID: 16773501, PMCID: PMC1609193, DOI: 10.1007/s00232-005-0832-x.Peer-Reviewed Original ResearchConceptsGap junction systemConnexin mutationsHuman deafnessConnective tissue cell gap junction systemEpithelial cell gap junction systemGap junctionsMammalian inner earNon-sensory cellsGap junction networkGap junction functionConnexin genesTransduction processesDifferent connexinsFunctional studiesMutant channelsHereditary deafnessJunction functionSensory cellsCochlear homeostasisMutationsRecycling mechanismCritical roleConnexinsHigh incidenceAnimal models