2024
Mutant p53 gains oncogenic functions through a chromosomal instability-induced cytosolic DNA response
Zhao M, Wang T, Gleber-Netto F, Chen Z, McGrail D, Gomez J, Ju W, Gadhikar M, Ma W, Shen L, Wang Q, Tang X, Pathak S, Raso M, Burks J, Lin S, Wang J, Multani A, Pickering C, Chen J, Myers J, Zhou G. Mutant p53 gains oncogenic functions through a chromosomal instability-induced cytosolic DNA response. Nature Communications 2024, 15: 180. PMID: 38167338, PMCID: PMC10761733, DOI: 10.1038/s41467-023-44239-2.Peer-Reviewed Original Research
2022
Mutant p53 drives an immune cold tumor immune microenvironment in oral squamous cell carcinoma
Shi Y, Xie T, Wang B, Wang R, Cai Y, Yuan B, Gleber-Netto FO, Tian X, Rodriguez-Rosario AE, Osman AA, Wang J, Pickering CR, Ren X, Sikora AG, Myers JN, Rangel R. Mutant p53 drives an immune cold tumor immune microenvironment in oral squamous cell carcinoma. Communications Biology 2022, 5: 757. PMID: 35902768, PMCID: PMC9334280, DOI: 10.1038/s42003-022-03675-4.Peer-Reviewed Original ResearchConceptsOral cavity squamous cell carcinomaTumor immune microenvironmentCold tumor immune microenvironmentSquamous cell carcinomaICI therapyOSCC modelCell carcinomaImmune microenvironmentCold tumorsCell death protein 1 (PD-1) inhibitorsCancer cell-intrinsic mechanismsImmune checkpoint inhibitor therapyOral squamous cell carcinomaCheckpoint inhibitor therapyCombination ICI treatmentEffective immunotherapeutic approachesInterferon genes (STING) agonistImmunosuppressive M2 macrophagesProtein 1 inhibitorTobacco-associated cancersICI responsivenessICI treatmentCell-intrinsic mechanismsImmunotherapeutic approachesInhibitor therapyFusobacterium is enriched in oral cancer and promotes induction of programmed death-ligand 1 (PD-L1)
Michikawa C, Gopalakrishnan V, Harrandah AM, Karpinets TV, Garg RR, Chu RA, Park YP, Chukkapallia SS, Yadlapalli N, Erikson-Carter KC, Gleber-Netto FO, Sayour E, Progulske-Fox A, Chan , Wu X, Zhang J, Jobin C, Wargo JA, Pickering CR, Myers JN, Silver N. Fusobacterium is enriched in oral cancer and promotes induction of programmed death-ligand 1 (PD-L1). Neoplasia 2022, 31: 100813. PMID: 35834946, PMCID: PMC9287628, DOI: 10.1016/j.neo.2022.100813.Peer-Reviewed Original ResearchConceptsPD-L1 expressionAdjacent normal tissuesWhole-exome sequencingNormal tissuesNeck cancerOral tongue squamous cell carcinoma patientsTongue squamous cell carcinoma patientsSquamous cell carcinoma patientsTumor samplesPD-L1 mRNA expressionPD-L1 protein expressionOral tongue SCCCell carcinoma patientsOral tongue cancerImmune cell infiltrationPD-L1 mRNATumor immune microenvironmentNeck SCC cell linesNeck cancer cell linesSCC cell linesDevelopment of headCell linesCancer cell linesTongue SCCCarcinoma patientsGenetic Changes Driving Immunosuppressive Microenvironments in Oral Premalignancy
Rangel R, Pickering CR, Sikora AG, Spiotto MT. Genetic Changes Driving Immunosuppressive Microenvironments in Oral Premalignancy. Frontiers In Immunology 2022, 13: 840923. PMID: 35154165, PMCID: PMC8829003, DOI: 10.3389/fimmu.2022.840923.Peer-Reviewed Original ResearchMeSH KeywordsCarcinoma, Squamous CellHumansMouth NeoplasmsPrecancerous ConditionsTumor MicroenvironmentConceptsOral premalignant lesionsImmunosuppressive microenvironmentProgression of OPLsOral cavity cancerGenomic alterationsImmune microenvironmentOral cancerOSCC progressionInflammatory environmentPremalignant lesionsSpecific genomic changesOral premalignancyTherapeutic approachesNovel biomarkersMalignant transformationMicroenvironmental changesCancerProgressionGenomic changesMicroenvironmentAlterationsGenetic changesPremalignancyTherapyLesions
2021
Biology of the Radio- and Chemo-Responsiveness in HPV Malignancies
Spiotto MT, Taniguchi CM, Klopp AH, Colbert LE, Lin SH, Wang L, Frederick MJ, Osman AA, Pickering CR, Frank SJ. Biology of the Radio- and Chemo-Responsiveness in HPV Malignancies. Seminars In Radiation Oncology 2021, 31: 274-285. PMID: 34455983, PMCID: PMC8689584, DOI: 10.1016/j.semradonc.2021.02.009.Peer-Reviewed Original ResearchConceptsHPV-positive cancersPotential biological mechanismsHPV-positive cancer cellsHPV-negative cancersCancer cellsImproved clinical outcomesCancer stem cell subpopulationMultiple anatomic sitesHPV-negative cellsG2/M arrestBiological mechanismsHPV MalignanciesLocoregional controlOverall survivalClinical outcomesPreclinical observationsAnatomic sitesHypoxic tumor microenvironmentStem cell subpopulationCancerTumor microenvironmentCell subpopulationsRadiosensitive phaseImpaired DNA damage responseOxidative stressTargeting resistance to radiation-immunotherapy in cold HNSCCs by modulating the Treg-dendritic cell axis
Knitz MW, Bickett TE, Darragh LB, Oweida AJ, Bhatia S, Van Court B, Bhuvane S, Piper M, Gadwa J, Mueller AC, Nguyen D, Nangia V, Osborne DG, Bai X, Ferrara SE, Boss MK, Goodspeed A, Burchill MA, Tamburini BAJ, Chan ED, Pickering CR, Clambey ET, Karam SD. Targeting resistance to radiation-immunotherapy in cold HNSCCs by modulating the Treg-dendritic cell axis. Journal For ImmunoTherapy Of Cancer 2021, 9: e001955. PMID: 33883256, PMCID: PMC8061827, DOI: 10.1136/jitc-2020-001955.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic Agents, ImmunologicalBasic-Leucine Zipper Transcription FactorsCell Line, TumorCombined Modality TherapyDendritic CellsDrug Resistance, NeoplasmHead and Neck NeoplasmsImmune Checkpoint InhibitorsImmunotherapyInterleukin-2 Receptor alpha SubunitLymphocyte DepletionMice, Inbred BALB CMice, Inbred C57BLMice, KnockoutPhenotypeRadiation Dose HypofractionationRadiation ToleranceRepressor ProteinsSquamous Cell Carcinoma of Head and NeckT-Lymphocytes, RegulatoryTumor BurdenTumor MicroenvironmentTumor Necrosis Factor Receptor Superfamily, Member 9ConceptsCombination radiation therapyRadiation therapyDendritic cellsLymph nodesMouse modelRadioresistant tumorsRegulatory T-cell depletionT cell effector responsesTumor-draining lymph nodesNeck squamous cell carcinomaOral squamous cell carcinoma tumorsT cell-dependent responsesSquamous cell carcinoma tumorsAnti-CD137 treatmentDC activation statusGy x 5Higher Treg numbersPlasticity of TregsAdoptive transfer studiesT-cell depletionSquamous cell carcinomaCell-dependent responsesOrthotopic mouse modelTumor necrosis factorαNew therapeutic opportunities
2020
Loss of p53 drives neuron reprogramming in head and neck cancer
Amit M, Takahashi H, Dragomir MP, Lindemann A, Gleber-Netto FO, Pickering CR, Anfossi S, Osman AA, Cai Y, Wang R, Knutsen E, Shimizu M, Ivan C, Rao X, Wang J, Silverman DA, Tam S, Zhao M, Caulin C, Zinger A, Tasciotti E, Dougherty PM, El-Naggar A, Calin GA, Myers JN. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 2020, 578: 449-454. PMID: 32051587, PMCID: PMC9723538, DOI: 10.1038/s41586-020-1996-3.Peer-Reviewed Original ResearchMeSH KeywordsAdrenergic AntagonistsAdrenergic NeuronsAnimalsCell DivisionCell TransdifferentiationCellular ReprogrammingDisease Models, AnimalDisease ProgressionFemaleHumansMaleMiceMice, Inbred BALB CMicroRNAsMouth NeoplasmsNerve FibersNeuritesReceptors, AdrenergicRetrospective StudiesSensory Receptor CellsTumor MicroenvironmentTumor Suppressor Protein p53Xenograft Model Antitumor AssaysConceptsOral cancerNerve fibersAdrenergic nerve fibersPoor clinical outcomeTrigeminal sensory neuronsLoss of TP53Sensory denervationAdrenergic nervesChemical sympathectomyNerve densitySensory nervesClinical outcomesSolid tumor microenvironmentLoss of p53Neck cancerPharmacological blockadeEndogenous neuronsRetrospective analysisMouse modelSensory neuronsAdrenergic phenotypeAdrenergic receptorsTumor growthTumor progressionTumor microenvironment