Skip to Main Content


External Faculty

  • Assistant Professor, The Jackson Laboratory

    Research Interests: gene expression regulation in cancer; alternative splicing; breast cancer; ovarian cancer; RNA biology

    My research goal is to elucidate how changes in gene expression regulation contribute to cancer. My lab focuses on characterizing the role of alternative-splicing misregulation in breast and ovarian cancer by using 3D cell culture and PDX models. Our unique expertise in both RNA biology and cancer research allows us to connect these distinct fields, and by combining innovative tools and interdisciplinary approaches, to gain novel insights into the molecular mechanism of gene expression regulation in normal and cancer cells. My research findings should lead to the development of novel biomarkers and promising drugs for cancer therapy.

  • Hi! I am Jean-Denis, a French Canadian who came to the US to complete his Post-doctoral studies at Yale University and who is now joining the UCONN Health team as an Assistant Professor! Here is a little bit about myself. Curiously, I fit most Canadian stereotypes out there. I don’t qualify winter in Connecticut as real winter. I need to play hockey to stay mentally sane. I provide maple syrup to people from the department in the Spring and I love lumberjacking with my grandfather in the Fall. You will see me wearing Montreal Canadiens gears on important game days, but I much prefer American football over Canadian football. When I am not in the lab, I enjoy passing quality time with my family. I have a young son and watching him grow is simply sublime. I am a big craft beer amateur and will venture to new breweries all over the northeast on weekends. I stay connected with the outdoors by hiking, skiing, ice skating, snowshoeing, rollerblading, fishing and more. In short, I practice a good balance between personal and professional life.

    Professionally, I am a very enthusiastic person. I love to share my passion for science with others and discuss about new ideas, experiments, results, recent publications, meetings and more. I completed my B.Sc. in Biotechnology at Université de Sherbrooke (Québec, Canada) and my Ph.D. in Biochemistry in the laboratory of Jean-Pierre Perreault at Université de Sherbrooke (Québec Canada). During my graduate studies, I addressed how do RNA structures control RNA activity? My work discovered novel properties and functions of RNA G-quadruplexes, a structure formed by G-rich sequences. First, I characterized their folding properties and dynamics in vitro (Beaudoin JD, et al. 2008; Beaudoin JD, et al. 2013). Next, I developed an algorithm to locate genomic sequences susceptible to form G-quaruplexes (Beaudoin JD, et al. 2014) and found that, in human cell cultures, 5’-UTR G-quadruplexes act as key translational repressors (Beaudoin JD and Perreault JP, 2010) and 3’-UTR G-quadruplexes can modulate alternative polyadenylation leading to differential expression (Beaudoin JD. and Perreault JP., Nucleic Acids Res. 2013). Together, this work provided mechanistic insights into a previously unrecognized role for RNA G-quadruplexes in gene expression regulation. Following from this work, we developed an oligonucleotide-based approach to target individual RNA G-quadruplexes and tune gene expression in a desired direction (Rouleau SG, Beaudoin JD, et al. 2015). These findings highlighted the potential to target RNA regulatory elements to control gene expression, opening promising novel therapeutic strategies.

    In 2013, I started my postdoc in the laboratory of Antonio Giraldez at Yale University. For my postdoctoral work, I extended my expertise in molecular, cellular and RNA biology to study a fundamental process in all animals, the maternal-to-zygotic transition, where post-transcriptional regulation orchestrates a profound change in the embryonic transcriptional landscape. Here, I asked two central questions: what are the RNA structures formed during early embryogenesis and how do they interact with cellular factors to control gene expression during development? To address these questions, I developed innovative genome-wide in vivo RNA probing techniques to gain structural information on the zebrafish transcriptome during embryogenesis. I also expanded my technical repertoire to perform high throughput approaches to measure genome-wide gene expression in vivo, including mRNA abundance (RNA-seq) and translation (Ribo-seq). By integrating this information, I generated a global interaction map between RNA structure, mRNA stability and translation during early embryogenesis (Beaudoin JD*, Novoa EM* et al. 2018.). Our results provide three major insights: (1) Contrary to the current dogma, we found that untranslated mRNAs are more structured in vivo compared to in vitro, (2) globally, translation guides mRNA structures rather than structure guiding translation (Karmer MC and Gregory BD, 2018.), and (3) RNA structures remodeled in 3’-UTRs are enriched for regulatory activity during development.

    Now, I am extremely excited to start my lab at UConn Health in the Department of Genetics and Genome Sciences and can’t wait to see what the future holds!

  • Professor and Chair, Genetics and Genome Sciences, UConn Health; Endowed Chair, Genomics and Personalized Healthcare, UConn Health; Director, UConn Stem Cell Institute; Associate Director, Institute for Systems Genomics, UConn Health

    Research Interests: alternative splicing regulation; alternative splicing in Drosophila; alternative splicing in human embryonic stem cells; Drosophila modENCODE Project; microRNAs in Planarian regeneration