2024
SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data
Liu Y, Li N, Qi J, Xu G, Zhao J, Wang N, Huang X, Jiang W, Wei H, Justet A, Adams T, Homer R, Amei A, Rosas I, Kaminski N, Wang Z, Yan X. SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data. Genome Biology 2024, 25: 271. PMID: 39402626, PMCID: PMC11475911, DOI: 10.1186/s13059-024-03416-2.Peer-Reviewed Original Research
2023
Emergence of division of labor in tissues through cell interactions and spatial cues
Adler M, Moriel N, Goeva A, Avraham-Davidi I, Mages S, Adams T, Kaminski N, Macosko E, Regev A, Medzhitov R, Nitzan M. Emergence of division of labor in tissues through cell interactions and spatial cues. Cell Reports 2023, 42: 112412. PMID: 37086403, PMCID: PMC10242439, DOI: 10.1016/j.celrep.2023.112412.Peer-Reviewed Original ResearchConceptsSingle-cell RNA sequencingMost cell typesCell-type populationsCell-cell interactionsDistinguishable expression patternsCell population levelSpatial transcriptomics dataCell interactionsLigand-receptor networkMulticellular organismsTranscriptomic dataRNA sequencingInstructive signalsExpression patternsSpecialist cellsCell typesIndividual cellsDivision of laborMultiple functionsTissue environmentSame cellsDifferent functionsPopulation levelCellsDivision
2022
Characterization of the COPD alveolar niche using single-cell RNA sequencing
Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T, Werder RB, Schupp JC, Nouws J, Robertson MJ, Coarfa C, Yang T, Chioccioli M, Omote N, Cosme C, Poli S, Ayaub EA, Chu SG, Jensen KH, Gomez JL, Britto CJ, Raredon MSB, Niklason LE, Wilson AA, Timshel PN, Kaminski N, Rosas IO. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nature Communications 2022, 13: 494. PMID: 35078977, PMCID: PMC8789871, DOI: 10.1038/s41467-022-28062-9.Peer-Reviewed Original ResearchConceptsSingle-cell RNA sequencingRNA sequencingCell-specific mechanismsChronic obstructive pulmonary diseaseAdvanced chronic obstructive pulmonary diseaseTranscriptomic network analysisSingle-cell RNA sequencing profilesCellular stress toleranceAberrant cellular metabolismStress toleranceRNA sequencing profilesTranscriptional evidenceCellular metabolismAlveolar nicheSequencing profilesHuman alveolar epithelial cellsChemokine signalingAlveolar epithelial type II cellsObstructive pulmonary diseaseSitu hybridizationType II cellsEpithelial type II cellsSequencingCOPD pathobiologyHuman lung tissue samples
2021
Transcriptomics of bronchoalveolar lavage cells identifies new molecular endotypes of sarcoidosis
Vukmirovic M, Yan X, Gibson KF, Gulati M, Schupp JC, DeIuliis G, Adams TS, Hu B, Mihaljinec A, Woolard TN, Lynn H, Emeagwali N, Herzog EL, Chen ES, Morris A, Leader JK, Zhang Y, Garcia JGN, Maier LA, Collman RG, Drake WP, Becich MJ, Hochheiser H, Wisniewski SR, Benos PV, Moller DR, Prasse A, Koth LL, Kaminski N. Transcriptomics of bronchoalveolar lavage cells identifies new molecular endotypes of sarcoidosis. European Respiratory Journal 2021, 58: 2002950. PMID: 34083402, PMCID: PMC9759791, DOI: 10.1183/13993003.02950-2020.Peer-Reviewed Original ResearchConceptsWeighted gene co-expression network analysisGene co-expression network analysisCo-expression network analysisGene expression programsGene expression patternsDistinct transcriptional programsImmune response pathwaysIon Torrent ProtonMicroarray expression datasetsExpression programsTranscriptional programsPhenotypic traitsGene modulesResponse pathwaysRNA sequencingMolecular endotypesExpression patternsGene expressionHilar lymphadenopathyOrgan involvementGenomic researchMechanistic targetExpression datasetsT helper type 1T cell immune responses