2022
Deep-learning-based estimation of attenuation map improves attenuation correction performance over direct attenuation estimation for myocardial perfusion SPECT
Du Y, Shang J, Sun J, Wang L, Liu YH, Xu H, Mok GSP. Deep-learning-based estimation of attenuation map improves attenuation correction performance over direct attenuation estimation for myocardial perfusion SPECT. Journal Of Nuclear Cardiology 2022, 30: 1022-1037. PMID: 36097242, DOI: 10.1007/s12350-022-03092-4.Peer-Reviewed Original ResearchDeep learning-based denoising in projection-domain and reconstruction-domain for low-dose myocardial perfusion SPECT
Sun J, Jiang H, Du Y, Li C, Wu T, Liu Y, Yang B, Mok G. Deep learning-based denoising in projection-domain and reconstruction-domain for low-dose myocardial perfusion SPECT. Journal Of Nuclear Cardiology 2022, 30: 970-985. PMID: 35982208, DOI: 10.1007/s12350-022-03045-x.Peer-Reviewed Original ResearchConceptsConditional generative adversarial networkGenerative adversarial networkImage qualityAdversarial networkOS-EM methodList-mode dataXCAT phantomPost-reconstruction filteringImagesSPECT projectionsDenoisingMyocardial perfusion SPECTHigh noise levelsPerfusion SPECTFull doseSPECT/CT scansNetworkDifferent anatomical variationsMode dataFilteringMP-SPECTLD imagesIncreasing angular sampling through deep learning for stationary cardiac SPECT image reconstruction
Xie H, Thorn S, Chen X, Zhou B, Liu H, Liu Z, Lee S, Wang G, Liu YH, Sinusas AJ, Liu C. Increasing angular sampling through deep learning for stationary cardiac SPECT image reconstruction. Journal Of Nuclear Cardiology 2022, 30: 86-100. PMID: 35508796, DOI: 10.1007/s12350-022-02972-z.Peer-Reviewed Original ResearchConceptsDeep learningReconstruction qualityImage reconstructionDeep learning methodsDeep neural networksDeep learning resultsImage qualityNetwork trainingSPECT image reconstructionNeural networkLearning methodsHigh image resolutionImage volumesClinical softwareImage metricsImage resolutionReconstruction resultsImproved image qualityTesting dataLearning resultsNetwork resultsPhysical phantomStationary imagingDifferent subjectsLearningDirect and indirect strategies of deep-learning-based attenuation correction for general purpose and dedicated cardiac SPECT
Chen X, Zhou B, Xie H, Shi L, Liu H, Holler W, Lin M, Liu YH, Miller EJ, Sinusas AJ, Liu C. Direct and indirect strategies of deep-learning-based attenuation correction for general purpose and dedicated cardiac SPECT. European Journal Of Nuclear Medicine And Molecular Imaging 2022, 49: 3046-3060. PMID: 35169887, PMCID: PMC9253078, DOI: 10.1007/s00259-022-05718-8.Peer-Reviewed Original Research
2021
Post-reconstruction attenuation correction for SPECT myocardium perfusion imaging facilitated by deep learning-based attenuation map generation
Liu H, Wu J, Shi L, Liu Y, Miller E, Sinusas A, Liu YH, Liu C. Post-reconstruction attenuation correction for SPECT myocardium perfusion imaging facilitated by deep learning-based attenuation map generation. Journal Of Nuclear Cardiology 2021, 29: 2881-2892. PMID: 34671940, DOI: 10.1007/s12350-021-02817-1.Peer-Reviewed Original ResearchDiagnostic accuracy of stress-only myocardial perfusion SPECT improved by deep learning
Liu H, Wu J, Miller EJ, Liu C, Yaqiang, Liu, Liu YH. Diagnostic accuracy of stress-only myocardial perfusion SPECT improved by deep learning. European Journal Of Nuclear Medicine And Molecular Imaging 2021, 48: 2793-2800. PMID: 33511425, DOI: 10.1007/s00259-021-05202-9.Peer-Reviewed Original ResearchConceptsMyocardial perfusion imagingCoronary artery diseaseMyocardial perfusion abnormalitiesPerfusion abnormalitiesDiagnostic accuracyConvolutional neural networkTomography myocardial perfusion imagingYale-New Haven HospitalMyocardial perfusion defect sizeSPECT myocardial perfusion imagingAbnormal myocardial perfusionReceiver-operating characteristic curvePerfusion defect sizeNew Haven HospitalAUC valuesSingle photon emissionMyocardial perfusion SPECTDeep learningHigh diagnostic accuracyArtery diseaseDL methodsFinal diagnosisPatient genderMyocardial perfusionPerfusion SPECT
2020
Noise reduction with cross-tracer and cross-protocol deep transfer learning for low-dose PET
Liu H, Wu J, Lu W, Onofrey JA, Liu YH, Liu C. Noise reduction with cross-tracer and cross-protocol deep transfer learning for low-dose PET. Physics In Medicine And Biology 2020, 65: 185006. PMID: 32924973, DOI: 10.1088/1361-6560/abae08.Peer-Reviewed Original ResearchDeep learning-based attenuation map generation for myocardial perfusion SPECT
Shi L, Onofrey JA, Liu H, Liu YH, Liu C. Deep learning-based attenuation map generation for myocardial perfusion SPECT. European Journal Of Nuclear Medicine And Molecular Imaging 2020, 47: 2383-2395. PMID: 32219492, DOI: 10.1007/s00259-020-04746-6.Peer-Reviewed Original Research