2021
Endothelial Stromal PD-L1 (Programmed Death Ligand 1) Modulates CD8+ T-Cell Infiltration After Heart Transplantation
Bracamonte-Baran W, Gilotra N, Won T, Rodriguez K, Talor M, Oh B, Griffin J, Wittstein I, Sharma K, Skinner J, Johns R, Russell S, Anders R, Zhu Q, Halushka M, Brandacher G, Čiháková D. Endothelial Stromal PD-L1 (Programmed Death Ligand 1) Modulates CD8+ T-Cell Infiltration After Heart Transplantation. Circulation Heart Failure 2021, 14: e007982. PMID: 34555935, PMCID: PMC8550427, DOI: 10.1161/circheartfailure.120.007982.Peer-Reviewed Original ResearchConceptsPD-L1 expressionT cell infiltrationPD-L1Heart transplantationEndothelial cellsHemodynamic parametersPD1/PD-L1 axisCD8 T-cell ratioMultivariate logistic regression analysisPeripheral blood mononuclear cellsMurine model resultsGraft endothelial cellsHeart transplant patientsPD-L1 axisT cell frequenciesT cell ratioHeart transplantation modelSurveillance endomyocardial biopsiesBlood mononuclear cellsHuman heart transplantationLogistic regression analysisGraft expressionLeukocyte compartmentLeukocyte patternModulates CD8
2020
Innate Lymphoid Cells Play a Pathogenic Role in Pericarditis
Choi H, Won T, Hou X, Chen G, Bracamonte-Baran W, Talor M, Jurčová I, Szárszoi O, Čurnova L, Stříž I, Hooper J, Melenovský V, Čiháková D. Innate Lymphoid Cells Play a Pathogenic Role in Pericarditis. Cell Reports 2020, 30: 2989-3003.e6. PMID: 32130902, PMCID: PMC7332109, DOI: 10.1016/j.celrep.2020.02.040.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell MovementChemokine CCL11Disease SusceptibilityEosinophilsFemaleFibroblastsGene Expression RegulationHeartHeart Function TestsHumansImmunity, InnateInterleukin-1 Receptor-Like 1 ProteinInterleukin-33Interleukin-5LymphocytesMaleMediastinumMice, Inbred BALB CPericarditisSignal TransductionUp-RegulationConceptsInnate lymphoid cellsEosinophilic pericarditisPathogenic roleMediastinal cavityLymphoid cellsGroup 2 innate lymphoid cellsCardiac fibroblastsDevelopment of pericarditisCardiac inflammationEotaxin-1Healthy controlsPericardial fluidCardiac diseasePericarditisB cellsSerous cavitiesILC2sEosinophilsPatientsMiceHeartCellsCritical roleFibroblastsInflammationTreg-Cell-Derived IL-35-Coated Extracellular Vesicles Promote Infectious Tolerance
Sullivan J, Tomita Y, Jankowska-Gan E, Lema D, Arvedson M, Nair A, Bracamonte-Baran W, Zhou Y, Meyer K, Zhong W, Sawant D, Szymczak-Workman A, Zhang Q, Workman C, Hong S, Vignali D, Burlingham W. Treg-Cell-Derived IL-35-Coated Extracellular Vesicles Promote Infectious Tolerance. Cell Reports 2020, 30: 1039-1051.e5. PMID: 31995748, PMCID: PMC7042971, DOI: 10.1016/j.celrep.2019.12.081.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCoculture TechniquesExtracellular VesiclesFemaleForkhead Transcription FactorsGene Knockout TechniquesHeart TransplantationImmune ToleranceImmunosuppression TherapyInterleukin-12 Subunit p35InterleukinsMiceMice, Inbred C57BLMice, Inbred CBAMice, TransgenicMicroscopy, Electron, TransmissionMinor Histocompatibility AntigensReceptors, CytokineT-Lymphocytes, RegulatoryConceptsIL-35Treg cellsInfectious toleranceExtracellular vesiclesExpression of Ebi3T regulatory (Treg) cellsImmunosuppressive cytokinesInterleukin-35Peripheral toleranceRegulatory cellsEpstein-BarrBystander lymphocytesSecondary suppressionReporter miceB lymphocytesEBI3Protein 3Foxp3LymphocytesGene reporterNovel mechanismP35 proteinCellsEV productionTregs
2019
The Cardiac Microenvironment Instructs Divergent Monocyte Fates and Functions in Myocarditis
Hou X, Chen G, Bracamonte-Baran W, Choi H, Diny N, Sung J, Hughes D, Won T, Wood M, Talor M, Hackam D, Klingel K, Davogustto G, Taegtmeyer H, Coppens I, Barin J, Čiháková D. The Cardiac Microenvironment Instructs Divergent Monocyte Fates and Functions in Myocarditis. Cell Reports 2019, 28: 172-189.e7. PMID: 31269438, PMCID: PMC6813836, DOI: 10.1016/j.celrep.2019.06.007.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, LyCell DifferentiationCell ProliferationC-Mer Tyrosine KinaseDisease Models, AnimalFibroblastsHumansInflammationInterleukin-17MacrophagesMiceMice, Inbred BALB CMice, KnockoutMicroscopy, Electron, TransmissionMonocytesMyocarditisMyocardiumParabiosisSignal TransductionTranscriptomeConceptsExperimental autoimmune myocarditisMonocyte-derived macrophagesIL-17AHeart failureCardiac fibroblastsMurine experimental autoimmune myocarditisIL-17A levelsMacrophage differentiationAutoimmune myocarditisAcute phaseCardiac fibrosisClinical correlationReceptor expressionLy6CMonocyte fateTypes of monocytesMacrophagesMyocarditisMHCIIMonocytesFibroblastsSupDifferentiationFibrosisSequalaeNon-cytotoxic Cardiac Innate Lymphoid Cells Are a Resident and Quiescent Type 2-Commited Population
Bracamonte-Baran W, Chen G, Hou X, Talor M, Choi H, Davogustto G, Taegtmeyer H, Sung J, Hackam D, Nauen D, Čiháková D. Non-cytotoxic Cardiac Innate Lymphoid Cells Are a Resident and Quiescent Type 2-Commited Population. Frontiers In Immunology 2019, 10: 634. PMID: 30984196, PMCID: PMC6450181, DOI: 10.3389/fimmu.2019.00634.Peer-Reviewed Original ResearchConceptsInnate lymphoid cellsIL-33 productionProgenitor-like featuresLymphoid cellsType 2IL-25 receptorNatural killer cellsSubsets of leukocytesAntigen-specific receptorsILC2 expansionInflammatory ILC2sAdoptive transferCardiac inflammationIL-33Killer cellsInflammatory conditionsMouse modelHealthy humansIschemic conditionsCardiac fibroblastsGATA3 expressionILC2Pathologic environmentHealthy heartIschemia
2018
Sca‐1+ cardiac fibroblasts promote development of heart failure
Chen G, Bracamonte‐Baran W, Diny N, Hou X, Talor M, Fu K, Liu Y, Davogustto G, Vasquez H, Taegtmeyer H, Frazier O, Waisman A, Conway S, Wan F, Čiháková D. Sca‐1+ cardiac fibroblasts promote development of heart failure. European Journal Of Immunology 2018, 48: 1522-1538. PMID: 29953616, PMCID: PMC6696927, DOI: 10.1002/eji.201847583.Peer-Reviewed Original ResearchConceptsHeart failureCardiac fibroblastsGM-CSFCardiac inflammationIL-17AFibroblast subsetsSca-1Post-infarct heart failureMyocardial infarction mouse modelExperimental autoimmune myocarditisHeart failure patientsCytokine production profileCardiac biopsy samplesAutoimmune myocarditisIschemic originFailure patientsIschemic cardiomyopathyInflammatory Ly6CImmune cellsMouse modelFl/Biopsy samplesMyocarditisMouse heartsSpecific ablation
2017
Cardiac Autoimmunity: Myocarditis
Bracamonte-Baran W, Čiháková D. Cardiac Autoimmunity: Myocarditis. Advances In Experimental Medicine And Biology 2017, 1003: 187-221. PMID: 28667560, PMCID: PMC5706653, DOI: 10.1007/978-3-319-57613-8_10.Peer-Reviewed Original ResearchConceptsAutoimmune processAdaptive T cell responsesGiant cell myocarditisT cell responsesVariable clinical presentationMonocytes/macrophagesImmunopathogenic featuresAcute complicationsAutoimmune myocarditisSystolic dysfunctionAcute myocarditisCryptic antigensHemodynamic complicationsHeart failureTreg inductionClinical presentationElectrophysiologic disturbancesHumoral responseClinical correlatesDifferent etiologiesInflammatory processImmune responseMyocarditisSpecific cytokinesChronic damageModification of host dendritic cells by microchimerism-derived extracellular vesicles generates split tolerance
Bracamonte-Baran W, Florentin J, Zhou Y, Jankowska-Gan E, Haynes W, Zhong W, Brennan T, Dutta P, Claas F, van Rood J, Burlingham W. Modification of host dendritic cells by microchimerism-derived extracellular vesicles generates split tolerance. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: 1099-1104. PMID: 28096390, PMCID: PMC5293109, DOI: 10.1073/pnas.1618364114.Peer-Reviewed Original ResearchMeSH KeywordsAdoptive TransferAnimalsB7-2 AntigenB7-H1 AntigenCD4-Positive T-LymphocytesChimerismDendritic CellsExtracellular VesiclesFemaleFetomaternal TransfusionH-2 AntigensHistocompatibility Antigen H-2DHistocompatibility Antigens Class IIImmune ToleranceIsoantigensMaleMaternal-Fetal ExchangeMiceMice, Inbred C57BLMice, TransgenicModels, ImmunologicalPregnancyT-Cell Antigen Receptor SpecificityConceptsHost dendritic cellsCD4 T cellsDendritic cellsPD-L1Maternal microchimerismT cellsMyeloid DCsPlasmacytoid DCsMHC alloantigensTransgenic CD4 T cellsMyeloid dendritic cellsPlasmacytoid dendritic cellsExtracellular vesiclesAdoptive transferAntitumor immunityMaternal antigensTransplant toleranceTumor immunityMurine modelSerum EVsPhysiologic linkMHC complexesMiceSerum fractionsMode of action
2015
Non-inherited maternal antigens, pregnancy, and allotolerance
Bracamonte-Baran W, Burlingham W. Non-inherited maternal antigens, pregnancy, and allotolerance. Biomedical Journal 2015, 38: 39-51. PMID: 25355389, DOI: 10.4103/2319-4170.143498.Peer-Reviewed Original ResearchConceptsNon-inherited maternal antigensNIMA effectMaternal antigensImmune systemFetal immune systemSemi-direct pathwayMaternal immune systemNormal human pregnancyBidirectional regulationGrowth factor βNIMA exposureRegulatory lymphocytesIL-35Paternal antigensHuman pregnancyImmunological phenomenaAntigenAllotoleranceFactor βMicrochimerismPregnancyIndirect pathwaysPolymorphic genesDirect pathwayPathway