2021
A polycystin-2 protein with modified channel properties leads to an increased diameter of renal tubules and to renal cysts
Grosch M, Brunner K, Ilyaskin AV, Schober M, Staudner T, Schmied D, Stumpp T, Schmidt KN, Madej MG, Pessoa TD, Othmen H, Kubitza M, Osten L, de Vries U, Mair MM, Somlo S, Moser M, Kunzelmann K, Ziegler C, Haerteis S, Korbmacher C, Witzgall R. A polycystin-2 protein with modified channel properties leads to an increased diameter of renal tubules and to renal cysts. Journal Of Cell Science 2021, 134: jcs259013. PMID: 34345895, PMCID: PMC8435292, DOI: 10.1242/jcs.259013.Peer-Reviewed Original Research
2020
Adult Inactivation of the Recessive Polycystic Kidney Disease Gene Causes Polycystic Liver Disease.
Besse W, Roosendaal C, Tuccillo L, Roy SG, Gallagher AR, Somlo S. Adult Inactivation of the Recessive Polycystic Kidney Disease Gene Causes Polycystic Liver Disease. Kidney360 2020, 1: 1068-1076. PMID: 33554127, PMCID: PMC7861569, DOI: 10.34067/kid.0002522020.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCystsFemaleLiver DiseasesMicePolycystic Kidney, Autosomal RecessiveReceptors, Cell SurfaceConceptsAutosomal recessive polycystic kidney diseaseSomatic second-hit mutationsAutosomal dominant polycystic kidney diseaseSecond-hit mutationsPolycystic liver diseaseLiver phenotypePolycystic kidney diseaseBile duct homeostasisSecond hit mutationLiver cystsLiver diseaseKidney diseaseCyst formationGenetic interactionsPattern of inheritanceDisease genesRecessive polycystic kidney diseaseGermline inheritanceDominant polycystic kidney diseaseDuctal plate formationWeeks of ageRecessive genotypeSubset of adultsSomatic mutationsPlate format
2018
Glutamine metabolism via glutaminase 1 in autosomal-dominant polycystic kidney disease
Soomro I, Sun Y, Li Z, Diggs L, Hatzivassiliou G, Thomas AG, Rais R, Parker SJ, Slusher BS, Kimmelman AC, Somlo S, Skolnik EY. Glutamine metabolism via glutaminase 1 in autosomal-dominant polycystic kidney disease. Nephrology Dialysis Transplantation 2018, 33: 1343-1353. PMID: 29420817, PMCID: PMC6070111, DOI: 10.1093/ndt/gfx349.Peer-Reviewed Original ResearchConceptsCyst growthCB-839Mouse modelGlutaminase 1Glutamine metabolismAutosomal dominant polycystic kidney disease cellsAutosomal dominant polycystic kidney diseaseCyst-lining epithelial cellsNormal human kidneyCompensatory metabolic changesInhibited mammalian targetPolycystic kidney diseaseCyst-lining epitheliaTumor cell proliferationKidney diseaseAnimal modelsGLS1 inhibitionHuman ADPKD kidneysHuman kidneyMammalian targetVariable outcomesCyst formationMetabolic changesADPKDMetabolism of glutamine