2021
The clinical spectrum of SARS-CoV-2 infection in Gaucher disease: Effect of both a pandemic and a rare disease that disrupts the immune system
Narayanan P, Nair S, Balwani M, Malinis M, Mistry P. The clinical spectrum of SARS-CoV-2 infection in Gaucher disease: Effect of both a pandemic and a rare disease that disrupts the immune system. Molecular Genetics And Metabolism 2021, 135: 115-121. PMID: 34412940, PMCID: PMC8361210, DOI: 10.1016/j.ymgme.2021.08.004.Peer-Reviewed Case Reports and Technical NotesConceptsSARS-CoV-2 infectionType 1 Gaucher diseaseSARS-CoV-2Gaucher diseaseRare diseaseCOVID-19Immune system dysfunctionRare disease populationMedian agePediatric patientsCase seriesFemale patientsAdverse outcomesClinical spectrumIntensive careGD patientsSystem dysfunctionRetrospective analysisDisease populationHigh riskGeneral populationPatientsImmune systemDiseaseSimilar frequency
2020
Glucosylsphingosine but not Saposin C, is the target antigen in Gaucher disease-associated gammopathy
Nair S, Bar N, Xu ML, Dhodapkar M, Mistry PK. Glucosylsphingosine but not Saposin C, is the target antigen in Gaucher disease-associated gammopathy. Molecular Genetics And Metabolism 2020, 129: 286-291. PMID: 32044242, PMCID: PMC8223251, DOI: 10.1016/j.ymgme.2020.01.009.Peer-Reviewed Original ResearchConceptsGaucher disease type 1Monoclonal gammopathyAntigenic targetsClonal immunoglobulinDisease type 1B cell activationAccumulation of glucosylceramideGD1 patientsImmunogenic lipidsMetabolic inflammationMultiple myelomaGD patientsHigh riskTarget antigenCell activationImmunoglobulin typeGammopathyType 1PatientsGenetic deficiencyAge-related phenotypesSaposin CClonal IgLysosomal glucocerebrosidaseGlcSph
2018
Antigen-mediated regulation in monoclonal gammopathies and myeloma
Nair S, Sng J, Boddupalli CS, Seckinger A, Chesi M, Fulciniti M, Zhang L, Rauniyar N, Lopez M, Neparidze N, Parker T, Munshi NC, Sexton R, Barlogie B, Orlowski R, Bergsagel L, Hose D, Flavell RA, Mistry PK, Meffre E, Dhodapkar MV. Antigen-mediated regulation in monoclonal gammopathies and myeloma. JCI Insight 2018, 3: e98259. PMID: 29669929, PMCID: PMC5931125, DOI: 10.1172/jci.insight.98259.Peer-Reviewed Original ResearchConceptsMultiple myelomaPlasma cellsGaucher diseaseAntigenic stimulationMonoclonal gammopathyAntigen-driven stimulationMonoclonal IgClonal IgB cell receptorSingle tumor cellsPatient cohortUndetermined significanceVivo responsivenessMalignant cloneGammopathyTumor growthMonoclonal tumorsCell receptorTumor cellsAntigenGene expression profilingStimulationClonal natureMyelomaTumors
2016
ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells
Boddupalli CS, Nair S, Gray SM, Nowyhed HN, Verma R, Gibson JA, Abraham C, Narayan D, Vasquez J, Hedrick CC, Flavell RA, Dhodapkar KM, Kaech SM, Dhodapkar MV. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells. Journal Of Clinical Investigation 2016, 126: 3905-3916. PMID: 27617863, PMCID: PMC5096804, DOI: 10.1172/jci85329.Peer-Reviewed Original ResearchConceptsTissue-resident memory T cellsMemory T cellsT cellsTRM cellsCellular therapyAdoptive cellular therapyImmune-deficient micePotential cellular therapySP T cellsSide population cellsHuman T cellsPutative subsetsAdoptive transferDistinct gene expression profilesCell mobilizationImmune surveillanceQuiescent subsetPopulation cellsMiceTherapyQuiescent phenotypeDistinct subsetsMember 1Nuclear receptorsSignature genesClonal Immunoglobulin against Lysolipids in the Origin of Myeloma
Nair S, Branagan AR, Liu J, Boddupalli CS, Mistry PK, Dhodapkar MV. Clonal Immunoglobulin against Lysolipids in the Origin of Myeloma. New England Journal Of Medicine 2016, 374: 555-561. PMID: 26863356, PMCID: PMC4804194, DOI: 10.1056/nejmoa1508808.Peer-Reviewed Original Research
2014
Type II NKT-TFH cells against Gaucher lipids regulate B-cell immunity and inflammation
Nair S, Boddupalli CS, Verma R, Liu J, Yang R, Pastores GM, Mistry PK, Dhodapkar MV. Type II NKT-TFH cells against Gaucher lipids regulate B-cell immunity and inflammation. Blood 2014, 125: 1256-1271. PMID: 25499455, PMCID: PMC4335081, DOI: 10.1182/blood-2014-09-600270.Peer-Reviewed Original ResearchConceptsI NKT cellsNKT cellsB cell activationT cellsB cellsTetramer-positive T cellsType II natural killer T cellsT cell receptor usageType I NKT cellsType II NKT cellsNatural killer T cellsFollicular helper phenotypeGD mouse modelMetabolic lipid disordersKiller T cellsB cell immunityGerminal center B cellsB-cell malignanciesAntilipid antibodiesDisease activityCytokine profileChronic inflammationHelper phenotypeHumoral immunityCognate help
2013
Endocytosis of Mycobacterium tuberculosis Heat Shock Protein 60 Is Required to Induce Interleukin-10 Production in Macrophages*
Parveen N, Varman R, Nair S, Das G, Ghosh S, Mukhopadhyay S. Endocytosis of Mycobacterium tuberculosis Heat Shock Protein 60 Is Required to Induce Interleukin-10 Production in Macrophages*. Journal Of Biological Chemistry 2013, 288: 24956-24971. PMID: 23846686, PMCID: PMC3750191, DOI: 10.1074/jbc.m113.461004.Peer-Reviewed Original ResearchConceptsToll-like receptorsIL-10 productionPro-inflammatory responseHeat shock protein 60Shock protein 60Immune responseInnate responseHost protective immune responsesProtein 60Interleukin-10 productionType immune responseProtective immune responseProduction of interleukinAnti-tuberculosis immunityTumor necrosis factorInnate immune responseMacrophage innate responsesMycobacterium tuberculosis bacteriaTLR4 receptorNecrosis factorP38 MAPK activationTLR2M. tuberculosisTuberculosis bacteriaP38 MAPK
2012
Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma
Richter J, Neparidze N, Zhang L, Nair S, Monesmith T, Sundaram R, Miesowicz F, Dhodapkar KM, Dhodapkar MV. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood 2012, 121: 423-430. PMID: 23100308, PMCID: PMC3548165, DOI: 10.1182/blood-2012-06-435503.Peer-Reviewed Original ResearchConceptsHuman iNKT cellsINKT cellsCombination therapyAntitumor T-cell immunitySerum soluble IL2 receptorMonocyte-derived dendritic cellsNatural killer T cellsBroad immune activationLow-dose lenalidomideSoluble IL2 receptorCycles of therapyHuman NKT cellsT cell immunityKiller T cellsInnate immune cellsInduction of eosinophiliaActivation of monocytesPrevention of cancerCycles of combinationAsymptomatic myelomaClinical myelomaMeasurable diseaseClinical regressionClinical responseNKT cellsPathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets
Mukhopadhyay S, Nair S, Ghosh S. Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiology Reviews 2012, 36: 463-485. PMID: 22092372, DOI: 10.1111/j.1574-6976.2011.00302.x.Peer-Reviewed Original ResearchConceptsMajor health problemHost immune responseEmergence of strainsDrug targetsDendritic cellsEffective drug targetsInhibition of apoptosisImmune responseNew drug targetsHealth problemsLipid metabolismMultiple drugsTuberculosisComplex etiologyMycobacterium tuberculosisIntracellular life styleTranscriptome signaturesVirulence mechanismsGenome-wide expression profilingDrugsAntibiotic drugsExpression profilingProtein secretionLife stylePoor understanding
2011
The PPE18 Protein of Mycobacterium tuberculosis Inhibits NF-κB/rel–Mediated Proinflammatory Cytokine Production by Upregulating and Phosphorylating Suppressor of Cytokine Signaling 3 Protein
Nair S, Pandey AD, Mukhopadhyay S. The PPE18 Protein of Mycobacterium tuberculosis Inhibits NF-κB/rel–Mediated Proinflammatory Cytokine Production by Upregulating and Phosphorylating Suppressor of Cytokine Signaling 3 Protein. The Journal Of Immunology 2011, 186: 5413-5424. PMID: 21451109, DOI: 10.4049/jimmunol.1000773.Peer-Reviewed Original ResearchMeSH KeywordsAntigens, BacterialBacterial ProteinsBlotting, WesternCell LineCell SeparationCytokinesElectrophoretic Mobility Shift AssayFlow CytometryHumansImmunoprecipitationInflammationMacrophagesMycobacterium tuberculosisNF-kappa BPhosphorylationReverse Transcriptase Polymerase Chain ReactionRNA, Small InterferingSignal TransductionSuppressor of Cytokine Signaling 3 ProteinSuppressor of Cytokine Signaling ProteinsTranscription Factor RelATransfectionTuberculosisUp-RegulationConceptsTranscription factorsNF-κB/Rel transcription factorsNuclear translocationNF-κB/RelRel transcription factorsSubsequent intracellular survivalC-Rel transcription factorPhosphorylation sitesTyrosine phosphorylationSpecific knockdownSuccessful infectionIntracellular survivalRel subunitsCytokine signaling-3 (SOCS-3) proteinNovel mechanismIκB kinasePhosphorylationProteinNuclear levelsNF-κB activationSOCS3Phosphorylation of IκBαSuppressorTNF-α productionTranslocation
2010
Glutathione-Redox Balance Regulates c-rel–Driven IL-12 Production in Macrophages: Possible Implications in Antituberculosis Immunotherapy
Alam K, Ghousunnissa S, Nair S, Valluri VL, Mukhopadhyay S. Glutathione-Redox Balance Regulates c-rel–Driven IL-12 Production in Macrophages: Possible Implications in Antituberculosis Immunotherapy. The Journal Of Immunology 2010, 184: 2918-2929. PMID: 20164428, DOI: 10.4049/jimmunol.0900439.Peer-Reviewed Original ResearchConceptsIL-12 productionImmune responseGlutathione redox balanceEnhanced Th1 responseProtective Th1 typeTNF-alpha levelsCellular immune responsesIFN-gamma productionIL-12 inductionBacillus Calmette-GuérinIL-12 cytokinesActive tuberculosisTh1 responseTh1 typeGlutathione ethyl esterNAC treatmentP70 productionCalmette-GuérinIntracellular reduced glutathioneP65 NF-kappaB.Pathophysiological disordersNF-kappaB.IkappaBalpha phosphorylationGSH donorMacrophages
2009
The PPE18 of Mycobacterium tuberculosis Interacts with TLR2 and Activates IL-10 Induction in Macrophage
Nair S, Ramaswamy PA, Ghosh S, Joshi DC, Pathak N, Siddiqui I, Sharma P, Hasnain SE, Mande SC, Mukhopadhyay S. The PPE18 of Mycobacterium tuberculosis Interacts with TLR2 and Activates IL-10 Induction in Macrophage. The Journal Of Immunology 2009, 183: 6269-6281. PMID: 19880448, DOI: 10.4049/jimmunol.0901367.Peer-Reviewed Original ResearchMeSH KeywordsAntigens, BacterialBacterial ProteinsCell LineCytokinesExtracellular Signal-Regulated MAP KinasesHumansInterleukin-10LipopolysaccharidesMacrophage ActivationMacrophagesMAP Kinase Kinase 4MonocytesMycobacterium tuberculosisP38 Mitogen-Activated Protein KinasesRecombinant ProteinsSignal TransductionToll-Like Receptor 2TuberculosisConceptsIL-10 inductionIL-10Proline-glutamic acidTh2-type responseIL-10 productionAnti-inflammatory responseMycobacterium tuberculosis strainsTHP-1 macrophagesPPE18 proteinInfected macrophagesTuberculosis strainsTLR2PPE18Synthetic lipopeptideMycobacterium tuberculosisMacrophagesMycobacterium tuberculosis interactsERK 1/2M. smegmatis strainPathophysiological functionsP38 MAPKType responseSilico docking analysisSustained activationPoor level
2008
Association of Strong Immune Responses to PPE Protein Rv1168c with Active Tuberculosis ▿
Khan N, Alam K, Nair S, Valluri VL, Murthy KJ, Mukhopadhyay S. Association of Strong Immune Responses to PPE Protein Rv1168c with Active Tuberculosis ▿. MSphere 2008, 15: 974-980. PMID: 18400969, PMCID: PMC2446626, DOI: 10.1128/cvi.00485-07.Peer-Reviewed Original ResearchConceptsTB patientsESAT-6Sensitized peripheral blood mononuclear cellsStrong gamma interferon responseSmear-negative pulmonary TBPeripheral blood mononuclear cellsExtrapulmonary TB casesSerodiagnosis of TBBlood mononuclear cellsPotent T-cell antigenControl of TBT-cell antigensGamma interferon responseStrong immune responseConventional diagnostic testsConventional enzyme immunoassayActive TBMycobacterium bovis BCGPulmonary TBActive tuberculosisTB casesTuberculosis infectionMononuclear cellsImmune responseStrong immunoreactivity