2002
Compensatory renal hypertrophy is mediated by a cell cycle-dependent mechanism
Liu B, Preisig PA. Compensatory renal hypertrophy is mediated by a cell cycle-dependent mechanism. Kidney International 2002, 62: 1650-1658. PMID: 12371965, DOI: 10.1046/j.1523-1755.2002.00620.x.Peer-Reviewed Original ResearchConceptsCdk2/cyclin E kinase activityCyclin E kinase activityTubule hypertrophyDay 4BrdU incorporationDevelopment of hypertrophyCyclin D kinaseCompensatory renal hypertrophyCell cycle-dependent mechanismProximal tubule proteinsTubule growthHypertrophic formUninephrectomized animalsNephrectomized ratsRenal hypertrophyC57BL6 miceRenal cortexKinase activityDay 2Proximal tubulesHypertrophyHypertrophy markersRatsKinase inhibitorsMice
1999
Size does matter: Will knockout of p21WAF1/CIP1 save the kidney by limiting compensatory renal growth?
Al-Awqati Q, Preisig P. Size does matter: Will knockout of p21WAF1/CIP1 save the kidney by limiting compensatory renal growth? Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 10551-10553. PMID: 10485857, PMCID: PMC33735, DOI: 10.1073/pnas.96.19.10551.Peer-Reviewed Original Research
1996
NH4Cl-induced hypertrophy is mediated by weak base effects and is independent of cell cycle processes
Franch H, Preisig P. NH4Cl-induced hypertrophy is mediated by weak base effects and is independent of cell cycle processes. American Journal Of Physiology 1996, 270: c932-c938. PMID: 8638677, DOI: 10.1152/ajpcell.1996.270.3.c932.Peer-Reviewed Original ResearchConceptsC-fos mRNA abundanceHuman papilloma virus 16NRK-52E cellsWeak base propertiesCell cycle processRenal hypertrophyClinical conditionsVirus 16Renal epithelial cellsCultured renal epithelial cellsCell cycleHypertrophyE7 genesAdditional studiesEpithelial cellsVesicular alkalinizationMRNA abundancePresent studyInactivation of pRbCellsProtein synthesisVacuolar proton pumpProtein abundanceVesicular compartments