2022
Computation and visualization of cell–cell signaling topologies in single-cell systems data using Connectome
Raredon MSB, Yang J, Garritano J, Wang M, Kushnir D, Schupp JC, Adams TS, Greaney AM, Leiby KL, Kaminski N, Kluger Y, Levchenko A, Niklason LE. Computation and visualization of cell–cell signaling topologies in single-cell systems data using Connectome. Scientific Reports 2022, 12: 4187. PMID: 35264704, PMCID: PMC8906120, DOI: 10.1038/s41598-022-07959-x.Peer-Reviewed Original ResearchCharacterization of the COPD alveolar niche using single-cell RNA sequencing
Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T, Werder RB, Schupp JC, Nouws J, Robertson MJ, Coarfa C, Yang T, Chioccioli M, Omote N, Cosme C, Poli S, Ayaub EA, Chu SG, Jensen KH, Gomez JL, Britto CJ, Raredon MSB, Niklason LE, Wilson AA, Timshel PN, Kaminski N, Rosas IO. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nature Communications 2022, 13: 494. PMID: 35078977, PMCID: PMC8789871, DOI: 10.1038/s41467-022-28062-9.Peer-Reviewed Original ResearchConceptsSingle-cell RNA sequencingRNA sequencingCell-specific mechanismsChronic obstructive pulmonary diseaseAdvanced chronic obstructive pulmonary diseaseTranscriptomic network analysisSingle-cell RNA sequencing profilesCellular stress toleranceAberrant cellular metabolismStress toleranceRNA sequencing profilesTranscriptional evidenceCellular metabolismAlveolar nicheSequencing profilesHuman alveolar epithelial cellsChemokine signalingAlveolar epithelial type II cellsObstructive pulmonary diseaseSitu hybridizationType II cellsEpithelial type II cellsSequencingCOPD pathobiologyHuman lung tissue samples
2021
Distinct roles of KLF4 in mesenchymal cell subtypes during lung fibrogenesis
Chandran RR, Xie Y, Gallardo-Vara E, Adams T, Garcia-Milian R, Kabir I, Sheikh AQ, Kaminski N, Martin KA, Herzog EL, Greif DM. Distinct roles of KLF4 in mesenchymal cell subtypes during lung fibrogenesis. Nature Communications 2021, 12: 7179. PMID: 34893592, PMCID: PMC8664937, DOI: 10.1038/s41467-021-27499-8.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell ProliferationDisease Models, AnimalDown-RegulationExtracellular MatrixFemaleFibroblastsFibrosisHumansKruppel-Like Factor 4LungLung InjuryMaleMesenchymal Stem CellsMiceMice, Inbred C57BLMyofibroblastsReceptor, Platelet-Derived Growth Factor betaRespiratory Tract DiseasesSignal TransductionTransforming Growth Factor betaConceptsMesenchymal cell typesPlatelet-derived growth factor receptorSmooth muscle actinLung fibrosisKruppel-like factor 4Forkhead box M1Growth factor receptorCell transitionCell typesExtracellular matrixDistinct rolesKLF4Box M1C chemokine ligandMesenchymal cell subtypesFactor receptorPro-fibrotic effectsFactor 4PDGFRMesenchymeCellsMacrophage accumulationKLF4 levelsChemokine ligandLung fibrogenesisLong noncoding RNA TINCR is a novel regulator of human bronchial epithelial cell differentiation state
Omote N, Sakamoto K, Li Q, Schupp JC, Adams T, Ahangari F, Chioccioli M, DeIuliis G, Hashimoto N, Hasegawa Y, Kaminski N. Long noncoding RNA TINCR is a novel regulator of human bronchial epithelial cell differentiation state. Physiological Reports 2021, 9: e14727. PMID: 33527707, PMCID: PMC7851438, DOI: 10.14814/phy2.14727.Peer-Reviewed Original ResearchConceptsTerminal differentiation-induced lncRNANormal human bronchial epithelial cellsTINCR overexpressionCell differentiationNotch genesTissue developmentBronchial epithelial cellsExtracellular matrix organizationCell phenotypeRNA sequencing analysisNumerous biological functionsRole of lncRNAsCell differentiation stateEpithelial cellsHuman bronchial epithelial cellsCiliated cell differentiationStaufen1 proteinNovel regulatorBasal cell phenotypeDownstream regulatorsRNA immunoprecipitationBiological functionsCritical regulatorDifferential expressionDifferentiation state
2020
Retrograde signaling by a mtDNA-encoded non-coding RNA preserves mitochondrial bioenergetics
Blumental-Perry A, Jobava R, Bederman I, Degar A, Kenche H, Guan B, Pandit K, Perry N, Molyneaux N, Wu J, Prendergas E, Ye Z, Zhang J, Nelson C, Ahangari F, Krokowski D, Guttentag S, Linden P, Townsend D, Miron A, Kang M, Kaminski N, Perry Y, Hatzoglou M. Retrograde signaling by a mtDNA-encoded non-coding RNA preserves mitochondrial bioenergetics. Communications Biology 2020, 3: 626. PMID: 33127975, PMCID: PMC7603330, DOI: 10.1038/s42003-020-01322-4.Peer-Reviewed Original ResearchConceptsMitochondrial genomeNuclear-encoded genesCell type-specific mannerNon-coding RNASteady-state transcriptionMitochondrial energy metabolismControl regionPositive regulationMitochondrial bioenergeticsMitochondria stressMitochondrial functionSpecific mannerAlveolar epithelial type II cellsEnergy metabolismType II cellsEpithelial type II cellsGenomePhysiological stressRNAII cellsCellsMouse lungTranscriptionGenesMitochondriaMitochondrial antiviral signaling protein is crucial for the development of pulmonary fibrosis
Kim SH, Lee JY, Yoon CM, Shin HJ, Lee SW, Rosas I, Herzog E, Dela Cruz C, Kaminski N, Kang MJ. Mitochondrial antiviral signaling protein is crucial for the development of pulmonary fibrosis. European Respiratory Journal 2020, 57: 2000652. PMID: 33093124, PMCID: PMC8559259, DOI: 10.1183/13993003.00652-2020.Peer-Reviewed Original ResearchConceptsDamage-associated molecular patternsIdiopathic pulmonary fibrosisPulmonary fibrosisMAVS aggregationMultiple damage-associated molecular patternsExperimental pulmonary fibrosisMitochondrial antiviral signaling proteinInnate immune responseIPF patientsMAVS signalingIPF treatmentBleomycin injuryLung fibrosisTherapeutic effectImmune responseTherapeutic strategiesMAVS expressionFibrosisDanger signalsCritical mediatorMolecular patternsABT-263LungInjuryBH3 mimeticsAn allosteric site on MKP5 reveals a strategy for small-molecule inhibition
Gannam Z, Min K, Shillingford SR, Zhang L, Herrington J, Abriola L, Gareiss PC, Pantouris G, Tzouvelekis A, Kaminski N, Zhang X, Yu J, Jamali H, Ellman JA, Lolis E, Anderson KS, Bennett AM. An allosteric site on MKP5 reveals a strategy for small-molecule inhibition. Science Signaling 2020, 13 PMID: 32843541, PMCID: PMC7569488, DOI: 10.1126/scisignal.aba3043.Peer-Reviewed Original ResearchMeSH KeywordsAllosteric SiteAmino Acid SequenceAnimalsCell DifferentiationCell LineDual-Specificity PhosphatasesEnzyme InhibitorsFemaleHigh-Throughput Screening AssaysHumansKineticsMiceMice, KnockoutMitogen-Activated Protein Kinase PhosphatasesMyoblastsProtein BindingSequence Homology, Amino AcidSignal TransductionSmall Molecule LibrariesConceptsDystrophic muscle diseaseMitogen-activated protein kinaseMuscle diseaseTGF-β1Promising therapeutic targetP38 mitogen-activated protein kinaseTherapeutic strategiesTherapeutic targetSmall molecule inhibitionSmad2 phosphorylationDiseasePotential targetSmall-molecule screenInhibitorsTreatmentInhibitionGenome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis
Allen RJ, Guillen-Guio B, Oldham JM, Ma SF, Dressen A, Paynton ML, Kraven LM, Obeidat M, Li X, Ng M, Braybrooke R, Molina-Molina M, Hobbs BD, Putman RK, Sakornsakolpat P, Booth HL, Fahy WA, Hart SP, Hill MR, Hirani N, Hubbard RB, McAnulty RJ, Millar AB, Navaratnam V, Oballa E, Parfrey H, Saini G, Whyte MKB, Zhang Y, Kaminski N, Adegunsoye A, Strek ME, Neighbors M, Sheng XR, Gudmundsson G, Gudnason V, Hatabu H, Lederer DJ, Manichaikul A, Newell JD, O’Connor G, Ortega VE, Xu H, Fingerlin TE, Bossé Y, Hao K, Joubert P, Nickle DC, Sin DD, Timens W, Furniss D, Morris AP, Zondervan KT, Hall IP, Sayers I, Tobin MD, Maher TM, Cho MH, Hunninghake GM, Schwartz DA, Yaspan BL, Molyneaux PL, Flores C, Noth I, Jenkins RG, Wain LV. Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2020, 201: 564-574. PMID: 31710517, PMCID: PMC7047454, DOI: 10.1164/rccm.201905-1017oc.Peer-Reviewed Original ResearchMeSH KeywordsAgedCase-Control StudiesCell Cycle ProteinsFemaleGene ExpressionGenetic Predisposition to DiseaseGenome-Wide Association StudyHumansIdiopathic Pulmonary FibrosisIntracellular Signaling Peptides and ProteinsKinesinsMaleMiddle AgedRisk AssessmentSignal TransductionSpindle ApparatusTOR Serine-Threonine KinasesConceptsGenome-wide association studiesAssociation studiesIPF susceptibilityNew genome-wide significant signalsGenome-wide significant signalsGenome-wide analysisCell-cell adhesionLarge genome-wide association studiesImportance of mTORPolygenic risk score analysisTelomere maintenanceCausal genesFunctional analysisSusceptibility variantsRisk score analysisMultiple pathwaysGenetic associationGenesHost defensePolygenic risk scoresIndependent studiesPossible roleExpression associatesSignificant signalRecent studies
2019
Single-cell connectomic analysis of adult mammalian lungs
Raredon MSB, Adams TS, Suhail Y, Schupp JC, Poli S, Neumark N, Leiby KL, Greaney AM, Yuan Y, Horien C, Linderman G, Engler AJ, Boffa DJ, Kluger Y, Rosas IO, Levchenko A, Kaminski N, Niklason LE. Single-cell connectomic analysis of adult mammalian lungs. Science Advances 2019, 5: eaaw3851. PMID: 31840053, PMCID: PMC6892628, DOI: 10.1126/sciadv.aaw3851.Peer-Reviewed Original ResearchConceptsTissue homeostasisMammalian lungSingle-cell RNA sequencing techniquesAdult mammalian lungRNA sequencing techniquesCell-cell interactionsSequencing techniquesKey pathwaysAlveolar type IFunctional roleCell typesCell populationsRegenerative medicineHomeostatic mechanismsHomeostasisFine architectureFunctional lung tissueIncomplete understandingMajor roleType ITissueRegulationPathwayAlveolar cell populationsDistal lungBAL Cell Gene Expression in Severe Asthma Reveals Mechanisms of Severe Disease and Influences of Medications
Weathington N, O’Brien M, Radder J, Whisenant TC, Bleecker ER, Busse WW, Erzurum SC, Gaston B, Hastie A, Jarjour N, Meyers D, Milosevic J, Moore W, Tedrow J, Trudeau J, Wong H, Wu W, Kaminski N, Wenzel S, Modena B. BAL Cell Gene Expression in Severe Asthma Reveals Mechanisms of Severe Disease and Influences of Medications. American Journal Of Respiratory And Critical Care Medicine 2019, 200: 837-856. PMID: 31161938, PMCID: PMC6812436, DOI: 10.1164/rccm.201811-2221oc.Peer-Reviewed Original ResearchMeSH KeywordsAdrenergic beta-AgonistsAdultAsthmaBronchoalveolar Lavage FluidCase-Control StudiesCyclic AMPEosinophilsEpithelial CellsFemaleGene ExpressionHumansIn Vitro TechniquesLymphocytesMacrophages, AlveolarMaleNeutrophilsSequence Analysis, RNASeverity of Illness IndexSignal TransductionTHP-1 CellsConceptsCell gene expressionGene expressionAirway epithelial cell gene expressionEpithelial cell gene expressionGlobal gene expressionCellular gene expressionCell expression profilesAsthma susceptibility lociProtein levelsSystem-wide analysisExpression networksImportant disease mechanismCoexpression networkCellular milieuExpression changesExpression profilesSusceptibility lociCellular modelDisease mechanismsBiomolecular mechanismsNew targetsRobust upregulationSample traitsGenesExpressionRole of dual-specificity protein phosphatase DUSP10/MKP-5 in pulmonary fibrosis
Xylourgidis N, Min K, Ahangari F, Yu G, Herazo-Maya JD, Karampitsakos T, Aidinis V, Binzenhöfer L, Bouros D, Bennett AM, Kaminski N, Tzouvelekis A. Role of dual-specificity protein phosphatase DUSP10/MKP-5 in pulmonary fibrosis. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2019, 317: l678-l689. PMID: 31483681, PMCID: PMC6879900, DOI: 10.1152/ajplung.00264.2018.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibiotics, AntineoplasticBleomycinDual-Specificity PhosphatasesFemaleFibroblastsHumansMAP Kinase Signaling SystemMiceMice, Inbred C57BLMice, KnockoutMitogen-Activated Protein Kinase PhosphatasesPhosphorylationPulmonary FibrosisSignal TransductionTransforming Growth Factor beta1ConceptsPulmonary fibrosisLung fibrosisFibrogenic genesLung fibroblastsM1 macrophage phenotypeIdiopathic pulmonary fibrosisHuman lung fibrosisGrowth factor-β1Levels of hydroxyprolineProtein kinase phosphatase 5IPF lungsReduced fibrosisMuscle fibrosisProfibrogenic effectsTGF-β1Smad7 levelsTherapeutic targetAnimal modelsFactor-β1FibrosisSmad3 phosphorylationEnhanced p38 MAPK activityP38 MAPK activityMyofibroblast differentiationMKP-5 expression
2018
Hypercapnia increases airway smooth muscle contractility via caspase-7–mediated miR-133a–RhoA signaling
Shigemura M, Lecuona E, Angulo M, Homma T, Rodríguez DA, Gonzalez-Gonzalez FJ, Welch LC, Amarelle L, Kim SJ, Kaminski N, Budinger GRS, Solway J, Sznajder JI. Hypercapnia increases airway smooth muscle contractility via caspase-7–mediated miR-133a–RhoA signaling. Science Translational Medicine 2018, 10 PMID: 30185650, PMCID: PMC6889079, DOI: 10.1126/scitranslmed.aat1662.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcholineAgedAged, 80 and overAirway ResistanceAnimalsCalciumCalpainCarbon DioxideCaspase 7Chronic DiseaseDown-RegulationEnzyme ActivationFemaleHumansHypercapniaMaleMEF2 Transcription FactorsMice, Inbred C57BLMicroRNAsMiddle AgedMuscle ContractionMuscle, SmoothMyocytes, Smooth MusclePulmonary Disease, Chronic ObstructiveRhoA GTP-Binding ProteinSignal TransductionConceptsChronic obstructive pulmonary diseaseAirway smooth muscle cellsSmooth muscle cellsMouse airway smooth muscle cellsSevere chronic obstructive pulmonary diseaseHuman airway smooth muscle cellsAirway smooth muscle contractilityMuscle cellsCorrection of hypercapniaSmooth muscle cell contractionCohort of patientsObstructive pulmonary diseaseHigh airway resistanceSevere lung diseaseDevelopment of hypercapniaSmooth muscle contractilityMuscle cell contractionRas homolog family member AMyosin light chain phosphorylationAirway contractilityAirway contractionHypercapnic patientsCOPD severityPulmonary diseaseAirway resistanceAn HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm
Lino Cardenas CL, Kessinger CW, Cheng Y, MacDonald C, MacGillivray T, Ghoshhajra B, Huleihel L, Nuri S, Yeri AS, Jaffer FA, Kaminski N, Ellinor P, Weintraub NL, Malhotra R, Isselbacher EM, Lindsay ME. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nature Communications 2018, 9: 1009. PMID: 29520069, PMCID: PMC5843596, DOI: 10.1038/s41467-018-03394-7.Peer-Reviewed Original ResearchMeSH KeywordsActomyosinAnimalsAortaAortic Aneurysm, ThoracicCell LineCell NucleusChromatinDisease Models, AnimalDNA HelicasesDNA MethylationFemaleFluorescent Antibody TechniqueHistone DeacetylasesHistonesHumansMaleMiceMice, KnockoutMuscle, Smooth, VascularMutationMyocytes, Smooth MuscleNuclear ProteinsPhenotypePrimary Cell CultureRepressor ProteinsRNA InterferenceRNA, Long NoncodingRNA, Small InterferingSignal TransductionTranscription FactorsTransforming Growth Factor betaConceptsChromatin-remodeling enzyme BRG1Contractile protein gene expressionProtein gene expressionLong noncoding RNA MALAT1Noncoding RNA MALAT1Bind chromatinTGF-β signalingTrimethylation modificationActomyosin cytoskeletonEpigenetic pathwaysContractile protein expressionGene expressionSimilar phenotypeRNA MALAT1Ternary complexBRG1HDAC9VSMC dysfunctionAortic aneurysmCytoskeletonProtein expressionPotential common mechanismsCommon mechanismSmooth muscle dysfunctionMutations
2017
Integrin alpha 11 in the regulation of the myofibroblast phenotype: implications for fibrotic diseases
Bansal R, Nakagawa S, Yazdani S, van Baarlen J, Venkatesh A, Koh AP, Song WM, Goossens N, Watanabe H, Beasley MB, Powell CA, Storm G, Kaminski N, van Goor H, Friedman SL, Hoshida Y, Prakash J. Integrin alpha 11 in the regulation of the myofibroblast phenotype: implications for fibrotic diseases. Experimental & Molecular Medicine 2017, 49: e396-e396. PMID: 29147013, PMCID: PMC5704196, DOI: 10.1038/emm.2017.213.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationDisease Models, AnimalFibrosisGene Expression RegulationGene Knockdown TechniquesHedgehog ProteinsHepatic Stellate CellsHumansImmunohistochemistryIntegrin alpha ChainsKidney DiseasesLiver CirrhosisMiceMyofibroblastsPhenotypeSignal TransductionTransforming Growth Factor betaConceptsHepatic stellate cellsFibrotic parametersMouse modelStellate cellsTissue fibrosisIntegrin alpha 11Alpha 11Smooth muscle actin-positive myofibroblastsLiver fibrosis mouse modelHuman hepatic stellate cellsMyofibroblast phenotypeFibrosis mouse modelPromising therapeutic targetActin-positive myofibroblastsCause of mortalityGrowth factor βAberrant extracellular matrixImpaired contractilityFibrogenic signalingFibrotic organsFibrogenic processExtracellular matrixTherapeutic targetOrgan fibrosisMyofibroblastic differentiationTranscriptome profiles in sarcoidosis and their potential role in disease prediction
Schupp JC, Vukmirovic M, Kaminski N, Prasse A. Transcriptome profiles in sarcoidosis and their potential role in disease prediction. Current Opinion In Pulmonary Medicine 2017, 23: 487-492. PMID: 28590292, PMCID: PMC5637542, DOI: 10.1097/mcp.0000000000000403.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsGenome-wide expression studiesWide expression studiesTranscriptome profilesTranscriptomic dataRNA sequencingExpression studiesGene expressionMolecular mechanismsLarge prospective followTh1 immune responseTranscriptomeNonnecrotizing granulomasProspective followSystemic diseaseDisease progressionTreatment outcomesImmune responseSarcoidosisPotential roleControl tissuesProgressive sarcoidosisKey roleDiseaseTranscriptomicsGranulomas
2015
A functional genomic model for predicting prognosis in idiopathic pulmonary fibrosis
Huang Y, Ma SF, Vij R, Oldham JM, Herazo-Maya J, Broderick SM, Strek ME, White SR, Hogarth DK, Sandbo NK, Lussier YA, Gibson KF, Kaminski N, Garcia JG, Noth I. A functional genomic model for predicting prognosis in idiopathic pulmonary fibrosis. BMC Pulmonary Medicine 2015, 15: 147. PMID: 26589497, PMCID: PMC4654815, DOI: 10.1186/s12890-015-0142-8.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisPrognostic indexIPF patientsPulmonary fibrosisValidation cohortTraining cohortMultivariate Cox regression survival analysisPrognostic modelPeripheral blood mononuclear cellsUnivariate Cox regression analysisCox regression survival analysisLow-risk patientsWeighted gene co-expression network analysisCox regression analysisBlood mononuclear cellsCourse of diseaseIndependent validation cohortRegression survival analysisNovel prognostic modelPredictor genesT cell biologyT cell receptorCurrent prognostic toolsFunctional pathway analysisFold changeReply: The Bleomycin Model: In Pursuit of Relevant Biomakers
Bauer Y, Nayler O, Kaminski N. Reply: The Bleomycin Model: In Pursuit of Relevant Biomakers. American Journal Of Respiratory Cell And Molecular Biology 2015, 53: 748-749. PMID: 26517754, PMCID: PMC5455695, DOI: 10.1165/rcmb.2015-0196le.Peer-Reviewed Original ResearchMesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs
Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, Stolz DB, Watkins SC, Di YP, Leikauf GD, Kolls J, Riches DW, Deiuliis G, Kaminski N, Boregowda SV, McKenna DH, Ortiz LA. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nature Communications 2015, 6: 8472. PMID: 26442449, PMCID: PMC4598952, DOI: 10.1038/ncomms9472.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArrestinsBlotting, WesternCell-Derived MicroparticlesExosomesExtracellular VesiclesFlow CytometryHumansMacrophagesMesenchymal Stem CellsMiceMicroRNAsMicroscopy, ElectronMitochondriaMitophagyMyeloid Differentiation Factor 88Oxidative StressReceptors, ImmunologicSignal TransductionSilicosisToll-Like Receptor 4Toll-Like Receptor 9Toll-Like ReceptorsConceptsMesenchymal stem cellsStem cellsDomain-containing protein 1Stem cell nicheHealthy mitochondrial functionHaematopoietic stem cellsCell nichePlasma membraneToll-like receptor signalingIntracellular oxidative stressMitochondrial functionExtracellular vesiclesMicro RNAsReceptor signalingProtein 1MitophagyMSC survivalMitochondriaOxidative stressMacrophage functionVesiclesCellsRecent studiesMacrophage activationMacrophagesSuppression of NLRX1 in chronic obstructive pulmonary disease
Kang MJ, Yoon CM, Kim BH, Lee CM, Zhou Y, Sauler M, Homer R, Dhamija A, Boffa D, West AP, Shadel GS, Ting JP, Tedrow JR, Kaminski N, Kim WJ, Lee CG, Oh YM, Elias JA. Suppression of NLRX1 in chronic obstructive pulmonary disease. Journal Of Clinical Investigation 2015, 125: 2458-2462. PMID: 25938787, PMCID: PMC4497738, DOI: 10.1172/jci71747.Peer-Reviewed Original ResearchConceptsChronic obstructive pulmonary diseaseObstructive pulmonary diseaseCigarette smokeAlveolar destructionPulmonary diseaseHuman chronic obstructive pulmonary diseaseExpression of NLRX1Innate immune pathwaysInnate immune responseQuality of lifeCOPD patientsPulmonary functionSubsequent inflammationImmune responseInflammasome activationMurine modelIndependent cohortImmune pathwaysInflammationDisease severityInflammasome responseImportant mediatorCell apoptosisNLRX1Tissue effectsA Novel Genomic Signature with Translational Significance for Human Idiopathic Pulmonary Fibrosis
Bauer Y, Tedrow J, de Bernard S, Birker-Robaczewska M, Gibson KF, Guardela BJ, Hess P, Klenk A, Lindell KO, Poirey S, Renault B, Rey M, Weber E, Nayler O, Kaminski N. A Novel Genomic Signature with Translational Significance for Human Idiopathic Pulmonary Fibrosis. American Journal Of Respiratory Cell And Molecular Biology 2015, 52: 217-231. PMID: 25029475, PMCID: PMC4370242, DOI: 10.1165/rcmb.2013-0310oc.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisHuman idiopathic pulmonary fibrosisLung fibrosis modelGrowth factor-β1IPF lungsPulmonary fibrosisFibrosis modelFactor-β1Therapeutic interventionsDevastating lung diseasePrimary human lung fibroblastsLung Tissue Research ConsortiumGene marker setsPotential therapeutic interventionsHuman lung fibroblastsEpithelial A549 cellsHuman epithelial A549 cellsBleomycin instillationLung fibrosisControl lungsLung diseaseControl cohortControl subjectsTranslational significanceNovel treatments