2024
Lytic bacteriophages induce the secretion of antiviral and proinflammatory cytokines from human respiratory epithelial cells
Zamora P, Reidy T, Armbruster C, Sun M, Van Tyne D, Turner P, Koff J, Bomberger J. Lytic bacteriophages induce the secretion of antiviral and proinflammatory cytokines from human respiratory epithelial cells. PLOS Biology 2024, 22: e3002566. PMID: 38652717, PMCID: PMC11037538, DOI: 10.1371/journal.pbio.3002566.Peer-Reviewed Original ResearchMeSH KeywordsBacteriophagesBiofilmsCystic FibrosisCytokinesEpithelial CellsHumansPhage TherapyPseudomonas aeruginosaPseudomonas InfectionsPseudomonas PhagesRespiratory MucosaConceptsLytic phagesLytic bacteriophagesPhage therapyAirway epithelial cellsPseudomonas aeruginosa phagesEpithelial cellsMultidrug resistanceAirway epitheliumCystic fibrosisProinflammatory cytokinesHuman respiratory epithelial cellsPhage exposurePhage familiesMammalian cell responsesHuman airway epithelial cellsInternalized phageTreat multidrug-resistantPhageBacterial isolatesTranscriptional profilesRespiratory epithelial cellsHuman hostChronic respiratory disordersBacterial biofilmsBacteriophageOptimized preparation pipeline for emergency phage therapy against Pseudomonas aeruginosa at Yale University
Würstle S, Lee A, Kortright K, Winzig F, An W, Stanley G, Rajagopalan G, Harris Z, Sun Y, Hu B, Blazanin M, Hajfathalian M, Bollyky P, Turner P, Koff J, Chan B. Optimized preparation pipeline for emergency phage therapy against Pseudomonas aeruginosa at Yale University. Scientific Reports 2024, 14: 2657. PMID: 38302552, PMCID: PMC10834462, DOI: 10.1038/s41598-024-52192-3.Peer-Reviewed Original ResearchMeSH KeywordsBacteriophagesHumansPhage TherapyPseudomonas aeruginosaPseudomonas InfectionsPseudomonas PhagesUniversitiesConceptsEvolutionary selection pressurePhage characterizationPhage therapyPersistent bacterial infectionsBacteriophage therapyPhageSelection pressurePseudomonas aeruginosaInvestigational new drug applicationBacterial infectionsNew Drug ApplicationTherapyDrug applicationClinical applicationAutographiviridaeBacteriaPotential strategy
2023
Bacteriophage Therapy for Pan-Drug-Resistant Pseudomonas aeruginosa in Two Persons With Cystic Fibrosis
Hahn A, Sami I, Chaney H, Koumbourlis A, Del Valle Mojica C, Cochrane C, Chan B, Koff J. Bacteriophage Therapy for Pan-Drug-Resistant Pseudomonas aeruginosa in Two Persons With Cystic Fibrosis. Journal Of Investigative Medicine High Impact Case Reports 2023, 11: 23247096231188243. PMID: 37515541, PMCID: PMC10387758, DOI: 10.1177/23247096231188243.Peer-Reviewed Original ResearchMeSH KeywordsChildCystic FibrosisHumansLungPhage TherapyPseudomonas aeruginosaPseudomonas InfectionsConceptsPulmonary exacerbationsCF transmembrane conductance regulator geneTransmembrane conductance regulator geneChronic bacterial colonizationRecurrent lung infectionsStructural lung damagePediatric clinical trialsLung function declineLung inflammationTreatment modalitiesLung infectionCystic fibrosisLung damageClinical trialsTherapeutic strategiesAntibiotic resistanceBacterial colonizationMonogenic diseasesBacteriophage therapyRegulated genesViscous secretionsReduced survivalFunctional declineExacerbationBacteriophage
2022
Novel Approaches to Multidrug-Resistant Infections in Cystic Fibrosis
Murray T, Stanley G, Koff J. Novel Approaches to Multidrug-Resistant Infections in Cystic Fibrosis. Clinics In Chest Medicine 2022, 43: 667-676. PMID: 36344073, DOI: 10.1016/j.ccm.2022.06.008.Peer-Reviewed Original ResearchConceptsMultidrug-resistant organismsCystic fibrosisTherapeutic approachesNontuberculous mycobacteriaCystic fibrosis transmembrane conductance regulator (CFTR) dysfunctionSystemic adverse eventsRespiratory tract infectionsMethicillin-resistant Staphylococcus aureusAdditional clinical trialsNew treatment optionsPharmacokinetics/pharmacodynamicsInnovative therapeutic approachesMultidrug-resistant infectionsMDRO infectionAdverse eventsPulmonary infectionTract infectionsOptimal dosingTreatment optionsClinical trialsNew therapiesNegative organismsInfectionAntibiotic resistancePatients
2006
Pseudomonas Lipopolysaccharide Accelerates Wound Repair via Activation of a Novel Epithelial Cell Signaling Cascade
Koff JL, Shao MX, Kim S, Ueki IF, Nadel JA. Pseudomonas Lipopolysaccharide Accelerates Wound Repair via Activation of a Novel Epithelial Cell Signaling Cascade. The Journal Of Immunology 2006, 177: 8693-8700. PMID: 17142770, DOI: 10.4049/jimmunol.177.12.8693.Peer-Reviewed Original ResearchConceptsTNF-alpha converting enzymeEGFR phosphorylationOxidase 1Wound repairNCI-H292 human airway epithelial cellsEpidermal growth factor receptor (EGFR) activationGrowth factor receptor activationAirway epithelial cellsEpithelial cellsCell signaling cascadesNormal human bronchial epithelial cellsTLR-4Airway epitheliumHuman bronchial epithelial cellsReactive oxygen species (ROS) scavengerPhosphorylation pathwaySignaling cascadesEssential functionsBronchial epithelial cellsEGFR ligandsHuman airway epithelial cellsChronic airway diseasesOxygen species scavengersPseudomonas bacteriaDual oxidase 1