2021
Chapter 12 Innate immunity in SLE pathogenesis
Kang I. Chapter 12 Innate immunity in SLE pathogenesis. 2021, 181-188. DOI: 10.1016/b978-0-12-820583-9.00025-7.Peer-Reviewed Original ResearchDanger-associated molecular patternsSystemic lupus erythematosusInnate immune cellsToll-like receptorsPattern recognition receptorsDendritic cellsSelf-nucleic acidsImmune cellsGermline-encoded pattern recognition receptorsMultiple inflammatory pathwaysMolecular patternsNuclear factor kappa BAntigen-presenting cellsArray of cytokinesFactor kappa BPathogen-associated molecular patternsCell-intrinsic alterationsLupus erythematosusSLE pathogenesisInflammatory pathwaysInflammatory eventsInterferon regulatory factorIntrinsic alterationsKappa BInnate immunity
2020
Advances in Disease Mechanisms and Translational Technologies: Clinicopathologic Significance of Inflammasome Activation in Autoimmune Diseases
Kahlenberg JM, Kang I. Advances in Disease Mechanisms and Translational Technologies: Clinicopathologic Significance of Inflammasome Activation in Autoimmune Diseases. Arthritis & Rheumatology 2020, 72: 386-395. PMID: 31562704, PMCID: PMC7050400, DOI: 10.1002/art.41127.Peer-Reviewed Original ResearchConceptsPattern recognition receptorsInflammasome activationRheumatic diseasesAutoimmune diseasesIL-18IL-1βClinicopathologic significanceProcaspase-1Damage-associated molecular patternsSystemic lupus erythematosusAdaptive immune pathwaysCrystal-induced arthropathiesCytokines IL-1βDevelopment of inflammationLocal inflammatory responseHost immune responsePrimary target organActive IL-1βActive caspase-1Inflammatory damageLupus erythematosusImmune toleranceRheumatoid arthritisSjögren's syndromePathogenic role
2018
Macrophage Migration Inhibitory Factor Regulates U1 Small Nuclear RNP Immune Complex–Mediated Activation of the NLRP3 Inflammasome
Shin MS, Kang Y, Wahl ER, Park HJ, Lazova R, Leng L, Mamula M, Krishnaswamy S, Bucala R, Kang I. Macrophage Migration Inhibitory Factor Regulates U1 Small Nuclear RNP Immune Complex–Mediated Activation of the NLRP3 Inflammasome. Arthritis & Rheumatology 2018, 71: 109-120. PMID: 30009530, PMCID: PMC6310104, DOI: 10.1002/art.40672.Peer-Reviewed Original ResearchMeSH KeywordsAntigen-Antibody ComplexAutoantibodiesBlotting, WesternCARD Signaling Adaptor ProteinsEnzyme-Linked Immunosorbent AssayFlow CytometryHumansInflammasomesInterleukin-1betaIntramolecular OxidoreductasesMacrophage Migration-Inhibitory FactorsMass SpectrometryMonocytesNLR Family, Pyrin Domain-Containing 3 ProteinReceptors, ImmunologicRibonucleoprotein, U1 Small NuclearConceptsMacrophage migration inhibitory factorSystemic lupus erythematosusMigration inhibitory factorNLRP3 inflammasome activationImmune complexesIL-1βNLRP3 inflammasomeHuman monocytesInflammasome activationExpression of MIFProduction of MIFInhibitory factorCaspase-1IL-1β levelsIL-1β productionEnzyme-linked immunosorbentQuantitative polymerase chain reactionHigh expression alleleLupus patientsMIF productionMIF receptorInflammatory characteristicsLupus erythematosusInterleukin-1βPolymerase chain reaction
2017
Macrophage Migration Inhibitory Factor Serves As an Upstream Regulator of NLRP3 Expression and Subsequent IL-1beta Production in Human Monocytes in Response to Lupus U1-snRNP Immune Complex
Shin M, Kang Y, Leng L, Bucala R, Kang I. Macrophage Migration Inhibitory Factor Serves As an Upstream Regulator of NLRP3 Expression and Subsequent IL-1beta Production in Human Monocytes in Response to Lupus U1-snRNP Immune Complex. The Journal Of Immunology 2017, 198: 210.3-210.3. DOI: 10.4049/jimmunol.198.supp.210.3.Peer-Reviewed Original ResearchMacrophage migration inhibitory factorMigration inhibitory factorIL-1β productionImmune complexesIL-1βHuman monocytesNLRP3 inflammasomeProduction of MIFExogenous MIFInhibitory factorMIF gene polymorphismsSerum MIF levelsLupus-prone miceSystemic lupus erythematosusExpression of NLRP3Subsequent tissue injuryIL-1beta productionNF-kB activationCaspase-1 activationMIF antagonistMIF levelsLupus patientsLupus erythematosusNLRP3 expressionAutoantibody production
2013
Self dsDNA induces IL-1β production from human monocytes by activating NLRP3 inflammasome in the presence of anti-dsDNA antibodies (P4083)
Shin M, Kang Y, Lee N, Kim S, Kang K, Lazova R, Kang I. Self dsDNA induces IL-1β production from human monocytes by activating NLRP3 inflammasome in the presence of anti-dsDNA antibodies (P4083). The Journal Of Immunology 2013, 190: 127.13-127.13. DOI: 10.4049/jimmunol.190.supp.127.13.Peer-Reviewed Original ResearchIL-1β productionAnti-dsDNA antibodiesIL-1βHuman monocytesReactive oxygen speciesCell responsesIL-1β dependent mannerPro-inflammatory cytokines IL-1βPeripheral blood mononuclear cellsSelf-nuclear antigensIL-17 productionSystemic lupus erythematosusInnate immune cellsBlood mononuclear cellsPathogenesis of lupusAntibody-positive seraCytokines IL-1βLupus pathogenesisLupus patientsLupus erythematosusAutoimmune responseCutaneous lesionsMononuclear cellsImmune cellsNLRP3 inflammasomeSelf Double-Stranded (ds)DNA Induces IL-1β Production from Human Monocytes by Activating NLRP3 Inflammasome in the Presence of Anti–dsDNA Antibodies
Shin MS, Kang Y, Lee N, Wahl ER, Kim SH, Kang KS, Lazova R, Kang I. Self Double-Stranded (ds)DNA Induces IL-1β Production from Human Monocytes by Activating NLRP3 Inflammasome in the Presence of Anti–dsDNA Antibodies. The Journal Of Immunology 2013, 190: 1407-1415. PMID: 23315075, PMCID: PMC3563755, DOI: 10.4049/jimmunol.1201195.Peer-Reviewed Original ResearchConceptsIL-1β productionIL-1βHuman monocytesReactive oxygen speciesOligomerization domain-like receptor family pyrinCell responsesProinflammatory cytokines IL-1βTh17 cell responseIL-17 productionAnti-dsDNA antibodiesSystemic lupus erythematosusInnate immune cellsAnti-dsDNA AbsPathogenesis of lupusCytokines IL-1βLupus pathogenesisLupus patientsFamily pyrinLupus erythematosusAutoimmune responseCutaneous lesionsImmune cellsT cellsNuclear AgsPathogenic hallmark
2012
U1-Small Nuclear Ribonucleoprotein Activates the NLRP3 Inflammasome in Human Monocytes
Shin MS, Kang Y, Lee N, Kim SH, Kang KS, Lazova R, Kang I. U1-Small Nuclear Ribonucleoprotein Activates the NLRP3 Inflammasome in Human Monocytes. The Journal Of Immunology 2012, 188: 4769-4775. PMID: 22490866, PMCID: PMC3347773, DOI: 10.4049/jimmunol.1103355.Peer-Reviewed Original ResearchConceptsU1 snRNPNuclear ribonucleoproteinSystemic lupus erythematosusIL-1β productionU1 small nuclear RNAU1 small nuclear ribonucleoproteinSmall nuclear ribonucleoproteinCytosolic protein complexesLupus erythematosusAutoimmune diseasesProtein complexesMicrobial nucleic acidsNuclear RNAPre-mRNAHuman monocytesNOD-like receptor familyReactive oxygen speciesEndogenous DNAReceptor familyMolecular complexesOxygen speciesRibonucleoproteinTLR7/8 pathwayIL-1βNuclear moleculesU1-snRNP activates the NLRP3 inflammasome in human monocytes (171.7)
Shin M, Kang Y, Lee N, Kang K, Lazova R, Kang I. U1-snRNP activates the NLRP3 inflammasome in human monocytes (171.7). The Journal Of Immunology 2012, 188: 171.7-171.7. DOI: 10.4049/jimmunol.188.supp.171.7.Peer-Reviewed Original ResearchSystemic lupus erythematosusIL-1β productionU1 snRNPAutoimmune diseasesIL-1βCaspase-1Human monocytesReactive oxygen speciesU1 small nuclear RNAU1 small nuclear ribonucleoproteinCytosolic protein complexesLupus erythematosusNLRP3 inflammasomeMicrobial nucleic acidsNLRP3Protein complexesNuclear RNANuclear ribonucleoproteinPre-mRNAEndogenous DNAMonocytesAntibodiesPotential roleCD14Inflammasome
2011
Expansion of IL-7Ralow memory CD8 T cells in human lupus (101.19)
Lee N, Shah K, Shin M, Kim S, Craft J, Kang I. Expansion of IL-7Ralow memory CD8 T cells in human lupus (101.19). The Journal Of Immunology 2011, 186: 101.19-101.19. DOI: 10.4049/jimmunol.186.supp.101.19.Peer-Reviewed Original ResearchSystemic lupus erythematosusDevelopment of SLESLE Disease Activity IndexMemory CD8SLE patientsT cellsCell subsetsHealthy controlsImmunopathogenesis of SLEAbstract Systemic lupus erythematosusHomeostatic cytokine IL-15IL-7 receptor alphaMemory CD8 T cellsCytotoxic molecules perforinHomeostasis of CD8Disease activity indexRole of CD8Cytokine IL-15CD8 T cellsImmune complex depositionProduction of autoantibodiesInflammatory autoimmune disorderT cell receptorDisease activityLupus erythematosus
2010
Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus
Shah K, Lee WW, Lee SH, Kim SH, Kang SW, Craft J, Kang I. Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus. Arthritis Research & Therapy 2010, 12: r53. PMID: 20334681, PMCID: PMC2888202, DOI: 10.1186/ar2964.Peer-Reviewed Original ResearchConceptsSystemic lupus erythematosusSLE Disease Activity Index (SLEDAI) scorePeripheral blood mononuclear cellsTh17-polarizing cytokinesTh1 cell responsesDisease activityT cellsHealthy subjectsIL-17Th1 cellsCell responsesPhorbol myristate acetateTh17 cellsLupus erythematosusIL-6Plasma levelsDisease activity index scoreBalance of CD4Balance of Th17Expression of Th17Th17 cell responseActivity index scoreFrequency of CD4Chemokine receptor CCR4Blood mononuclear cells
2006
CHAPTER 28 Systemic Lupus Erythematosus: Immunologic Features
KANG I, CRAFT J. CHAPTER 28 Systemic Lupus Erythematosus: Immunologic Features. 2006, 357-367. DOI: 10.1016/b978-012595961-2/50031-7.Peer-Reviewed Original ResearchSystemic lupus erythematosusPlasmacytoid dendritic cellsT cellsAdaptive immunityImmune complexesAberrant innate immune responsesAdaptive immune cellsUpregulation of IFNSubsequent tissue injuryPeripheral blood cellsInnate immune responseActivation of complementRespective autoantigensDendritic cellsLupus erythematosusData support rolesImmune cellsSerologic hallmarkTissue injuryClinical diseaseImmune responseTarget organsFc receptorsB cellsImmune system
2004
Defective Control of Latent Epstein-Barr Virus Infection in Systemic Lupus Erythematosus
Kang I, Quan T, Nolasco H, Park SH, Hong MS, Crouch J, Pamer EG, Howe JG, Craft J. Defective Control of Latent Epstein-Barr Virus Infection in Systemic Lupus Erythematosus. The Journal Of Immunology 2004, 172: 1287-1294. PMID: 14707107, DOI: 10.4049/jimmunol.172.2.1287.Peer-Reviewed Original ResearchMeSH KeywordsAdultB-Lymphocyte SubsetsCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCytomegalovirusEpitopes, T-LymphocyteEpstein-Barr Virus InfectionsFemaleHerpesvirus 4, HumanHumansLeukocytes, MononuclearLupus Erythematosus, SystemicLymphocyte CountMaleMiddle AgedSeverity of Illness IndexViral LoadVirus LatencyConceptsSystemic lupus erythematosusEBV viral loadT cell responsesViral loadT cellsIFN-gammaCell responsesEBV infectionLupus erythematosusHealthy controlsEBV-specific T-cell responsesVirus-specific T cell responsesLatent Epstein-Barr virus (EBV) infectionEBV-specific immune responsesEpstein-Barr virus infectionAltered T-cell responsesDefective controlFrequency of CD69HLA-A2 tetramersTetramer-positive CD8Latent EBV infectionEBV-specificImmunosuppressive medicationsDisease activityLupus patients
2003
Infectious complications in SLE after immunosuppressive therapies
Kang I, Park S. Infectious complications in SLE after immunosuppressive therapies. Current Opinion In Internal Medicine 2003, 2: 629-635. DOI: 10.1097/00132980-200302060-00015.Peer-Reviewed Original ResearchSystemic lupus erythematosusMannose-binding lectin variant allelesHigh-dose glucocorticoidsImmunosuppressive therapyLupus erythematosusInfectious complicationsMycophenolate mofetilImmunosuppressive drugsRisk factorsVariant allelesMannose-binding lectin deficiencyMajor organ involvementUse of steroidsCommon viral infectionsExtrinsic risk factorsStrong risk factorIncidence of infectionHerpes zosterOrgan involvementSerious infectionsLectin deficiencyErythematosusImmune responsePatientsViral infectionInfectious complications in SLE after immunosuppressive therapies
Kang I, Park S. Infectious complications in SLE after immunosuppressive therapies. Current Opinion In Internal Medicine 2003, 2: 629-635. DOI: 10.1097/00132980-200312000-00015.Peer-Reviewed Original ResearchSystemic lupus erythematosusMannose-binding lectin variant allelesHigh-dose glucocorticoidsImmunosuppressive therapyLupus erythematosusInfectious complicationsMycophenolate mofetilImmunosuppressive drugsRisk factorsVariant allelesMannose-binding lectin deficiencyMajor organ involvementUse of steroidsCommon viral infectionsExtrinsic risk factorsStrong risk factorIncidence of infectionHerpes zosterOrgan involvementSerious infectionsLectin deficiencyErythematosusImmune responsePatientsViral infectionEnhanced proliferative response of CD4+ T cells from patients with systemic lupus erythematosus by T-cell receptor stimulation
Park S, Kang I, Kim H, Craft J. Enhanced proliferative response of CD4+ T cells from patients with systemic lupus erythematosus by T-cell receptor stimulation. Arthritis Research & Therapy 2003, 5: 151. PMCID: PMC2833942, DOI: 10.1186/ar952.Peer-Reviewed Original Research
1997
Central Nervous System Vasculitis in Systemic Lupus Erythematosus
Kang I, Hutchinson G. Central Nervous System Vasculitis in Systemic Lupus Erythematosus. JCR Journal Of Clinical Rheumatology 1997, 3: 349-352. PMID: 19078225, DOI: 10.1097/00124743-199712000-00010.Peer-Reviewed Original ResearchSystemic lupus erythematosusCentral nervous systemOral cyclophosphamideCNS vasculitisCNS symptomsLupus erythematosusBrain biopsyCentral nervous system vasculitisActive systemic lupus erythematosusDaily oral cyclophosphamideHigh-dose prednisoneIntravenous pulse methylprednisolonePulse methylprednisoloneSLE patientsEarly institutionVasculitisNervous systemShort courseErythematosusMethylprednisolonePrednisoneCyclophosphamideBiopsyPatientsSymptoms