Comparison of Machine Learning Methods With National Cardiovascular Data Registry Models for Prediction of Risk of Bleeding After Percutaneous Coronary Intervention
Mortazavi BJ, Bucholz EM, Desai NR, Huang C, Curtis JP, Masoudi FA, Shaw RE, Negahban SN, Krumholz HM. Comparison of Machine Learning Methods With National Cardiovascular Data Registry Models for Prediction of Risk of Bleeding After Percutaneous Coronary Intervention. JAMA Network Open 2019, 2: e196835. PMID: 31290991, PMCID: PMC6624806, DOI: 10.1001/jamanetworkopen.2019.6835.Peer-Reviewed Original ResearchConceptsPercutaneous coronary interventionMajor bleedingC-statisticCoronary interventionMAIN OUTCOMEIndex percutaneous coronary interventionSubsequent coronary artery bypassPercutaneous coronary intervention (PCI) proceduresHospital major bleedingMajor bleeding ratesNationwide clinical registryCoronary artery bypassCoronary intervention proceduresComparative effectiveness studiesRisk score modelComplexity of presentationMean c-statisticCoronary angiography dataRegistry modelNCDR modelsArtery bypassBleeding eventsPrediction of riskClinical variablesBleeding rate