2022
Bioactive lipids and metabolic syndrome—a symposium report
DeVito LM, Dennis EA, Kahn BB, Shulman GI, Witztum JL, Sadhu S, Nickels J, Spite M, Smyth S, Spiegel S. Bioactive lipids and metabolic syndrome—a symposium report. Annals Of The New York Academy Of Sciences 2022, 1511: 87-106. PMID: 35218041, PMCID: PMC9219555, DOI: 10.1111/nyas.14752.Peer-Reviewed Original ResearchConceptsBioactive lipidsMetabolic syndromeCardiometabolic conditionsCardiovascular diseaseAnimal modelsDietary lipidsLipid metabolismMetabolic homeostasisMultitude of functionsLipidomic approachLipid pathwaysContinued investigationSyndromeMolecular functionsSymposium reportGenetic studiesLipidsPathwayInflammationGreater understandingDiseaseLiverMacrophagesLipogenesis
2021
Isthmin-1 is an adipokine that promotes glucose uptake and improves glucose tolerance and hepatic steatosis
Jiang Z, Zhao M, Voilquin L, Jung Y, Aikio MA, Sahai T, Dou FY, Roche AM, Carcamo-Orive I, Knowles JW, Wabitsch M, Appel EA, Maikawa CL, Camporez JP, Shulman GI, Tsai L, Rosen ED, Gardner CD, Spiegelman BM, Svensson KJ. Isthmin-1 is an adipokine that promotes glucose uptake and improves glucose tolerance and hepatic steatosis. Cell Metabolism 2021, 33: 1836-1852.e11. PMID: 34348115, PMCID: PMC8429235, DOI: 10.1016/j.cmet.2021.07.010.Peer-Reviewed Original ResearchConceptsFatty liver diseaseAdipose glucose uptakeGlucose toleranceLiver diseaseHepatic steatosisGlucose uptakeDiet-induced obese miceImpaired glucose toleranceInsulin-like growth factor receptorType 2 diabetesHepatic lipid synthesisIsthmin 1Growth factor receptorObese miceInsulin sensitivityTherapeutic dosingMouse modelGlucoregulatory functionGlucose regulationUnmet needTherapeutic potentialDiabetesLipid accumulationPI3K-AktFactor receptorDeletion of the diabetes candidate gene Slc16a13 in mice attenuates diet-induced ectopic lipid accumulation and insulin resistance
Schumann T, König J, von Loeffelholz C, Vatner DF, Zhang D, Perry RJ, Bernier M, Chami J, Henke C, Kurzbach A, El-Agroudy NN, Willmes DM, Pesta D, de Cabo R, O´Sullivan J, Simon E, Shulman GI, Hamilton BS, Birkenfeld AL. Deletion of the diabetes candidate gene Slc16a13 in mice attenuates diet-induced ectopic lipid accumulation and insulin resistance. Communications Biology 2021, 4: 826. PMID: 34211098, PMCID: PMC8249653, DOI: 10.1038/s42003-021-02279-8.Peer-Reviewed Original ResearchMeSH KeywordsAMP-Activated Protein KinasesAnimalsDiabetes Mellitus, Type 2Diet, High-FatGene ExpressionGenetic Predisposition to DiseaseHumansInsulin ResistanceLipid MetabolismLiverMice, Inbred C57BLMice, KnockoutMitochondriaMonocarboxylic Acid TransportersNon-alcoholic Fatty Liver DiseaseObesityOxygen ConsumptionConceptsMitochondrial respirationGenome-wide association studiesNovel susceptibility genesLipid accumulationPlasma membraneAMPK activationAssociation studiesPhysiological functionsEctopic lipid accumulationReduced hepatic lipid accumulationSusceptibility genesLactate transporterMonocarboxylate transportersPotential targetGenesTransportersDeletionLipid contentHepatic lipid accumulationPotential importanceKnockout miceRespirationHepatic insulin sensitivityMCT13Accumulation
2020
Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice
Li X, Zhang D, Vatner DF, Goedeke L, Hirabara SM, Zhang Y, Perry RJ, Shulman GI. Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 32584-32593. PMID: 33293421, PMCID: PMC7768680, DOI: 10.1073/pnas.1922169117.Peer-Reviewed Original ResearchConceptsEpididymal white adipose tissueInsulin resistanceAdiponectin treatmentAdipose tissueHigh-fat diet-induced insulin resistanceType 2 diabetes mellitusWhole-body insulin resistanceDiet-induced insulin resistanceSkeletal muscleEctopic lipid storageReverses insulin resistanceInsulin-mediated suppressionMuscle fatty acid oxidationEndogenous glucose productionMuscle insulin resistanceWhite adipose tissueLipoprotein lipase activityMuscle fat oxidationPKCε translocationInsulin-stimulated glucose uptakeFatty acid oxidationTAG uptakeDiabetes mellitusMuscle sensitivityAkt serine phosphorylationEffect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults
Kahleova H, Petersen KF, Shulman GI, Alwarith J, Rembert E, Tura A, Hill M, Holubkov R, Barnard ND. Effect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults. JAMA Network Open 2020, 3: e2025454. PMID: 33252690, PMCID: PMC7705596, DOI: 10.1001/jamanetworkopen.2020.25454.Peer-Reviewed Original ResearchMeSH KeywordsAbsorptiometry, PhotonAdultAgedBlood GlucoseBody CompositionBody WeightCholesterolCholesterol, HDLCholesterol, LDLC-PeptideDiet, Fat-RestrictedDiet, VeganEnergy IntakeEnergy MetabolismFemaleGlycated HemoglobinHepatocytesHumansInsulinInsulin ResistanceIntra-Abdominal FatLipid MetabolismLiverMaleMiddle AgedMuscle Fibers, SkeletalMuscle, SkeletalObesityOverweightPostprandial PeriodProton Magnetic Resonance SpectroscopyTriglyceridesConceptsLow-fat vegan dietHomeostasis model assessment indexIntramyocellular lipid levelsModel assessment indexIntervention groupLipid levelsBody weightInsulin resistancePostprandial metabolismVegan dietOverweight adultsDietary interventionInsulin sensitivityThermic effectControl groupPlant-based dietary interventionDual X-ray absorptiometryInsulin resistance leadExcess body weightInsulin sensitivity indexType 2 diabetesMajor health problemProton magnetic resonance spectroscopyX-ray absorptiometrySubset of participantsOne-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: a human study with unilateral limb suspension
Bilet L, Phielix E, van de Weijer T, Gemmink A, Bosma M, Moonen-Kornips E, Jorgensen JA, Schaart G, Zhang D, Meijer K, Hopman M, Hesselink MKC, Ouwens DM, Shulman GI, Schrauwen-Hinderling VB, Schrauwen P. One-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: a human study with unilateral limb suspension. Diabetologia 2020, 63: 1211-1222. PMID: 32185462, PMCID: PMC7228997, DOI: 10.1007/s00125-020-05128-1.Peer-Reviewed Original ResearchConceptsMitochondrial oxidative capacityLow mitochondrial oxidative capacityLipid infusionInsulin resistancePhysical inactivityOxidative capacityLipid-induced insulin resistanceUnilateral lower limb suspensionConclusions/interpretationTogetherIntramyocellular lipid depositionMusculus tibialis anteriorChronic metabolic disorderIntramyocellular lipid accumulationType 2 diabetesReduced insulin sensitivityMuscle fat accumulationMusculus vastus lateralisMitochondrial functionUnilateral limb suspensionIMCL contentContralateral legInsulin sensitivityResultsIn vivoTibialis anteriorFat accumulationMitochondrial Dysfunction, Insulin Resistance, and Potential Genetic Implications
Sangwung P, Petersen KF, Shulman GI, Knowles JW. Mitochondrial Dysfunction, Insulin Resistance, and Potential Genetic Implications. Endocrinology 2020, 161: bqaa017. PMID: 32060542, PMCID: PMC7341556, DOI: 10.1210/endocr/bqaa017.Peer-Reviewed Original ResearchConceptsInsulin resistanceWhole-body insulin resistanceMitochondrial functionEctopic lipid depositionBody insulin resistanceType 2 diabetesWhite adipose tissuePrediabetic individualsVivo metabolic studiesInsulin-responsive tissuesLipid depositionAdipose tissueType 2Skeletal muscleMitochondrial dysfunctionPotential mechanismsMetabolic studiesHuman genetic studiesTissueEnvironmental determinantsMitochondrial malfunctionCellular energy balanceRecent insightsCritical roleDiabetes
2019
Controlled-release mitochondrial protonophore (CRMP) reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates
Goedeke L, Peng L, Montalvo-Romeral V, Butrico GM, Dufour S, Zhang XM, Perry RJ, Cline GW, Kievit P, Chng K, Petersen KF, Shulman GI. Controlled-release mitochondrial protonophore (CRMP) reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates. Science Translational Medicine 2019, 11 PMID: 31578240, PMCID: PMC6996238, DOI: 10.1126/scitranslmed.aay0284.Peer-Reviewed Original ResearchConceptsControlled-release mitochondrial protonophoreNonalcoholic fatty liver diseaseCRMP treatmentHepatic triglyceridesDiet-induced rodent modelReversal of hypertriglyceridemiaFatty liver diseaseNonhuman primate modelMitochondrial protonophoreEndogenous glucose productionLow-density lipoproteinMitochondrial fat oxidationHepatic inflammationMetabolic syndromeFatty liverLiver diseaseHepatic steatosisInsulin resistanceAdverse reactionsPlasma triglyceridesPrimate modelOral administrationFood intakeHepatic mitochondrial oxidationRodent models
2017
Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms
Ferrandino G, Kaspari RR, Spadaro O, Reyna-Neyra A, Perry RJ, Cardone R, Kibbey RG, Shulman GI, Dixit VD, Carrasco N. Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: e9172-e9180. PMID: 29073114, PMCID: PMC5664516, DOI: 10.1073/pnas.1707797114.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseDe novo lipogenesisAdipose tissue lipolysisHepatic insulin resistanceThyroid hormonesHypothyroid miceImpaired suppressionInsulin resistanceTissue lipolysisInsulin secretionHigh thyroid-stimulating hormone levelsRegulation of THThyroid-stimulating hormone levelsLipid utilizationFatty liver diseaseSerum glucose levelsEndogenous glucose productionLow thyroid hormoneFatty acidsHepatic lipid utilizationLiver diseaseSevere hypothyroidismHormone levelsProfound suppressionGlucose levels
2014
The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes
Perry RJ, Samuel VT, Petersen KF, Shulman GI. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 2014, 510: 84-91. PMID: 24899308, PMCID: PMC4489847, DOI: 10.1038/nature13478.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsType 2 diabetesHepatic insulin resistanceNon-alcoholic fatty liver diseaseFatty liver diseaseInsulin resistanceLiver diseaseHepatic lipidsHealth care costsInflammatory signalingTherapeutic approachesMortality rateDiabetesRelated epidemicsProtein kinase CεDiseaseCellular modificationsEpidemicLipid speciesMorbidityLipidsDiacylglycerol activationMice
2000
Contrasting Effects of IRS-1 Versus IRS-2 Gene Disruption on Carbohydrate and Lipid Metabolism in Vivo *
Previs S, Withers D, Ren J, White M, Shulman G. Contrasting Effects of IRS-1 Versus IRS-2 Gene Disruption on Carbohydrate and Lipid Metabolism in Vivo *. Journal Of Biological Chemistry 2000, 275: 38990-38994. PMID: 10995761, DOI: 10.1074/jbc.m006490200.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsCarbohydrate MetabolismFatty Acids, NonesterifiedFood DeprivationGas Chromatography-Mass SpectrometryGlucoseGlycerolInsulinInsulin Receptor Substrate ProteinsIntracellular Signaling Peptides and ProteinsLipid MetabolismLiverMaleMiceMusclesMutationPhenotypePhosphoproteinsRadioimmunoassayTime FactorsConceptsLipid metabolismInsulin resistanceIRS-2Glucose utilizationPlasma free fatty acid concentrationsWhole-body glucose utilizationGlycerol turnoverFree fatty acid concentrationsMarked insulin resistancePeripheral glucose metabolismPeripheral glucose utilizationHyperinsulinemic-euglycemic clampEndogenous glucose productionIRS-1Effect of insulinHepatic glycogen synthesisWT miceFatty acid concentrationsInsulin receptor substrateGlucose metabolismFasted miceAdipose tissueReduced suppressionGlucose productionMice
1999
Effects of free fatty acids on glucose transport and IRS-1–associated phosphatidylinositol 3-kinase activity
Dresner A, Laurent D, Marcucci M, Griffin M, Dufour S, Cline G, Slezak L, Andersen D, Hundal R, Rothman D, Petersen K, Shulman G. Effects of free fatty acids on glucose transport and IRS-1–associated phosphatidylinositol 3-kinase activity. Journal Of Clinical Investigation 1999, 103: 253-259. PMID: 9916137, PMCID: PMC407880, DOI: 10.1172/jci5001.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultFatty Acids, NonesterifiedFemaleGlucoseGlucose Clamp TechniqueGlucose-6-PhosphateGlycerolGlycogenHumansHyperinsulinismInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceLipid MetabolismMagnetic Resonance SpectroscopyMaleMuscle, SkeletalPhosphatidylinositol 3-KinasesPhosphoproteinsConceptsFree fatty acidsIRS-1-associated phosphatidylinositolLipid infusionInsulin resistanceGlycerol infusionPlasma free fatty acidsWhole-body glucose uptakeFive-hour infusionLipid/heparinHyperinsulinemic-euglycemic clampGlucose concentrationGlucose transportMuscle glycogen synthesisDiminished glucose transportMuscle biopsy samplesHuman skeletal muscleRate of insulinGlucose-6-phosphate concentrationFatty acidsHealthy subjectsBiopsy samplesInfusion studiesIdentical protocolInfusionIRS-1-associated PIIntramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study
Krssak M, Falk Petersen K, Dresner A, DiPietro L, Vogel SM, Rothman DL, Shulman G, Roden M. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 1999, 42: 113-116. PMID: 10027589, DOI: 10.1007/s001250051123.Peer-Reviewed Original ResearchConceptsIntramyocellular lipid concentrationsIntramyocellular lipid contentInsulin sensitivityLipid concentrationsPlasma non-esterified fatty acid concentrationsNon-esterified fatty acid concentrationsWhole-body insulin sensitivityNon-diabetic adultsNon-esterified fatty acidsBody insulin sensitivityNon-obese humansMuscle biopsy studiesCross-sectional analysisInsulin resistanceIntramuscular lipid contentBiopsy studiesClamp testFatty acid concentrationsLipid contentPlasma concentrationsSoleus muscleLinear regression analysisPmol/Inverse correlationM values