2023
O-linked N-acetylglucosamine modification is essential for physiological adipose expansion induced by high-fat feeding
Nakamoto A, Ohashi N, Sugawara L, Morino K, Ida S, Perry R, Sakuma I, Yanagimachi T, Fujita Y, Ugi S, Kume S, Shulman G, Maegawa H. O-linked N-acetylglucosamine modification is essential for physiological adipose expansion induced by high-fat feeding. AJP Endocrinology And Metabolism 2023, 325: e46-e61. PMID: 37224467, PMCID: PMC10292976, DOI: 10.1152/ajpendo.00263.2022.Peer-Reviewed Original ResearchConceptsFKO miceAdipose tissueBody weight gainPrimary cultured adipocytesAdipose expansionFree fatty acidsInflammatory genesWeight gainFree fatty acid effluxCultured adipocytesDiet-induced obesityHigh-fat dietHigh-fat feedingLess body weightDe novo lipogenesisAdipose tissue physiologyDe novo lipogenesis genesFatty acid effluxWeeks of ageAdipose inflammationGlucose intoleranceRAW 264.7 macrophagesControl miceFatty acidsSevere fibrosis
2020
Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease
Luukkonen PK, Dufour S, Lyu K, Zhang XM, Hakkarainen A, Lehtimäki TE, Cline GW, Petersen KF, Shulman GI, Yki-Järvinen H. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 7347-7354. PMID: 32179679, PMCID: PMC7132133, DOI: 10.1073/pnas.1922344117.Peer-Reviewed Original ResearchMeSH KeywordsBody CompositionCitrate (si)-SynthaseDiet, KetogenicFatty AcidsFatty Acids, NonesterifiedFatty LiverFemaleHumansInsulinInsulin ResistanceLipoproteins, VLDLLiverMaleMiddle AgedMitochondriaNon-alcoholic Fatty Liver DiseaseObesityOverweightOxidation-ReductionPyruvate CarboxylaseTriglyceridesConceptsNonalcoholic fatty liver diseaseFatty liver diseaseIntrahepatic triglyceridesKetogenic dietHepatic insulin resistanceNonesterified fatty acidsInsulin resistanceLiver diseaseOverweight/obese subjectsHepatic mitochondrial redox stateSerum insulin concentrationsHepatic mitochondrial metabolismProton magnetic resonance spectroscopyStable isotope infusionKD dietObese subjectsFatty acidsPlasma leptinHepatic steatosisInsulin concentrationsNEFA concentrationsBody weightTriiodothyronine concentrationsIsotope infusionWeight lossLeptin mediates postprandial increases in body temperature through hypothalamus–adrenal medulla–adipose tissue crosstalk
Perry RJ, Lyu K, Rabin-Court A, Dong J, Li X, Yang Y, Qing H, Wang A, Yang X, Shulman GI. Leptin mediates postprandial increases in body temperature through hypothalamus–adrenal medulla–adipose tissue crosstalk. Journal Of Clinical Investigation 2020, 130: 2001-2016. PMID: 32149734, PMCID: PMC7108915, DOI: 10.1172/jci134699.Peer-Reviewed Original ResearchConceptsBrown adipose tissueLeptin concentrationsBody temperatureAdrenomedullary catecholamine secretionPlasma leptin concentrationsAdipose tissue lipolysisFasting-induced reductionFeeding-induced increaseMeal ingestionPlasma catecholaminesPostprandial increaseCatecholamine secretionObese ratsTissue lipolysisLean ratsAdrenergic activationAdipose tissueTissue crosstalkWeight gainIntragastric infusionRatsLeptinBolusLipolysisFatty acids
2019
266-OR: Plasma Membrane sn-1,2 Diacylglycerol Mediates Lipid-Induced Hepatic Insulin Resistance
LYU K, ZHANG Y, ZHANG D, KAHN M, NOZAKI Y, BHANOT S, BOGAN J, CLINE G, SAMUEL V, SHULMAN G. 266-OR: Plasma Membrane sn-1,2 Diacylglycerol Mediates Lipid-Induced Hepatic Insulin Resistance. Diabetes 2019, 68 DOI: 10.2337/db19-266-or.Peer-Reviewed Original ResearchHepatic insulin resistanceInsulin resistanceExogenous fatty acidsInsulin actionLipid dropletsHepatic ceramide contentHyperinsulinemic-euglycemic clampHepatic insulin actionBioactive lipid speciesHepatic glucose productionChow-fed ratsHepatic diacylglycerol contentAdvisory PanelFatty acidsHepatic steatosisImpaired suppressionSingle doseSpouse/partnerGlucose productionPKCε activationJanssen ResearchAcute knockdownCeramide contentNational InstituteReceptor kinase activation
2017
Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms
Ferrandino G, Kaspari RR, Spadaro O, Reyna-Neyra A, Perry RJ, Cardone R, Kibbey RG, Shulman GI, Dixit VD, Carrasco N. Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: e9172-e9180. PMID: 29073114, PMCID: PMC5664516, DOI: 10.1073/pnas.1707797114.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseDe novo lipogenesisAdipose tissue lipolysisHepatic insulin resistanceThyroid hormonesHypothyroid miceImpaired suppressionInsulin resistanceTissue lipolysisInsulin secretionHigh thyroid-stimulating hormone levelsRegulation of THThyroid-stimulating hormone levelsLipid utilizationFatty liver diseaseSerum glucose levelsEndogenous glucose productionLow thyroid hormoneFatty acidsHepatic lipid utilizationLiver diseaseSevere hypothyroidismHormone levelsProfound suppressionGlucose levels
2015
Macrophage-specific de Novo Synthesis of Ceramide Is Dispensable for Inflammasome-driven Inflammation and Insulin Resistance in Obesity*
Camell CD, Nguyen KY, Jurczak MJ, Christian BE, Shulman GI, Shadel GS, Dixit VD. Macrophage-specific de Novo Synthesis of Ceramide Is Dispensable for Inflammasome-driven Inflammation and Insulin Resistance in Obesity*. Journal Of Biological Chemistry 2015, 290: 29402-29413. PMID: 26438821, PMCID: PMC4705943, DOI: 10.1074/jbc.m115.680199.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsBone Marrow CellsCarrier ProteinsCeramidesDiet, High-FatDisease Models, AnimalFatty AcidsFemaleInflammasomesInflammationInsulin ResistanceLipidsMacrophagesMaleMiceMice, TransgenicMitochondriaNLR Family, Pyrin Domain-Containing 3 ProteinObesityOxidative StressSerine C-PalmitoyltransferaseConceptsDe novo synthesisNovo synthesisOverexpression of catalaseDietary lipid overloadSynthesis machineryTissue homeostasisCell-specific deletionInflammasome activationAdipose tissue homeostasisNLRP3 inflammasome activationMyeloid cell-specific deletionMetabolic pathwaysCeramide synthesisAlternate metabolic pathwaysCaspase-1 cleavageEnergy homeostasisLipid overloadCeramideLipid metabolismInflammasome-dependent mannerOxidative stressDanger signalsFat diet-induced obesityHomeostasisFatty acids
1999
Effects of free fatty acids on glucose transport and IRS-1–associated phosphatidylinositol 3-kinase activity
Dresner A, Laurent D, Marcucci M, Griffin M, Dufour S, Cline G, Slezak L, Andersen D, Hundal R, Rothman D, Petersen K, Shulman G. Effects of free fatty acids on glucose transport and IRS-1–associated phosphatidylinositol 3-kinase activity. Journal Of Clinical Investigation 1999, 103: 253-259. PMID: 9916137, PMCID: PMC407880, DOI: 10.1172/jci5001.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultFatty Acids, NonesterifiedFemaleGlucoseGlucose Clamp TechniqueGlucose-6-PhosphateGlycerolGlycogenHumansHyperinsulinismInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceLipid MetabolismMagnetic Resonance SpectroscopyMaleMuscle, SkeletalPhosphatidylinositol 3-KinasesPhosphoproteinsConceptsFree fatty acidsIRS-1-associated phosphatidylinositolLipid infusionInsulin resistanceGlycerol infusionPlasma free fatty acidsWhole-body glucose uptakeFive-hour infusionLipid/heparinHyperinsulinemic-euglycemic clampGlucose concentrationGlucose transportMuscle glycogen synthesisDiminished glucose transportMuscle biopsy samplesHuman skeletal muscleRate of insulinGlucose-6-phosphate concentrationFatty acidsHealthy subjectsBiopsy samplesInfusion studiesIdentical protocolInfusionIRS-1-associated PI
1992
Validation of 13c nmr measurement of human skeletal muscle glycogen by direct biochemical assay of needle biopsy samples
Taylor R, Price T, Rothman D, Shulman R, Shulman G. Validation of 13c nmr measurement of human skeletal muscle glycogen by direct biochemical assay of needle biopsy samples. Magnetic Resonance In Medicine 1992, 27: 13-20. PMID: 1435198, DOI: 10.1002/mrm.1910270103.Peer-Reviewed Original Research