2022
Temporal and spatial topography of cell proliferation in cancer
Gaglia G, Kabraji S, Rammos D, Dai Y, Verma A, Wang S, Mills CE, Chung M, Bergholz JS, Coy S, Lin JR, Jeselsohn R, Metzger O, Winer EP, Dillon DA, Zhao JJ, Sorger PK, Santagata S. Temporal and spatial topography of cell proliferation in cancer. Nature Cell Biology 2022, 24: 316-326. PMID: 35292783, PMCID: PMC8959396, DOI: 10.1038/s41556-022-00860-9.Peer-Reviewed Original Research
2019
Impact of a Pre-Operative Exercise Intervention on Breast Cancer Proliferation and Gene Expression: Results from the Pre-Operative Health and Body (PreHAB) Study
Ligibel JA, Dillon D, Giobbie-Hurder A, McTiernan A, Frank E, Cornwell M, Pun M, Campbell N, Dowling RJO, Chang MC, Tolaney S, Chagpar AB, Yung RL, Freedman RA, Dominici LS, Golshan M, Rhei E, Taneja K, Huang Y, Brown M, Winer EP, Jeselsohn R, Irwin ML. Impact of a Pre-Operative Exercise Intervention on Breast Cancer Proliferation and Gene Expression: Results from the Pre-Operative Health and Body (PreHAB) Study. Clinical Cancer Research 2019, 25: 5398-5406. PMID: 31018921, DOI: 10.1158/1078-0432.ccr-18-3143.Peer-Reviewed Original ResearchMeSH KeywordsBreast NeoplasmsCell ProliferationExerciseExercise TherapyFemaleHumansPreoperative CareConceptsPre-operative healthBreast cancerExercise interventionKi-67Exercise participantsLower cancer-specific mortalityPre-operative exercise interventionCancer-specific mortalityControl participantsBody mass indexTumor immune infiltratesImpact of exerciseBreast cancer proliferationMinutes/weekBreast cancer diagnosisOpportunity trialBaseline biopsiesImmune infiltratesMass indexSurgical excisionMean ageIntervention periodGene expressionChanges of expressionBreast tumorsA Phase II Randomized Study of Neoadjuvant Letrozole Plus Alpelisib for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer (NEO-ORB)
Mayer IA, Prat A, Egle D, Blau S, Fidalgo JAP, Gnant M, Fasching PA, Colleoni M, Wolff AC, Winer EP, Singer CF, Hurvitz S, Estévez LG, van Dam PA, Kümmel S, Mundhenke C, Holmes F, Babbar N, Charbonnier L, Diaz-Padilla I, Vogl FD, Sellami D, Arteaga CL. A Phase II Randomized Study of Neoadjuvant Letrozole Plus Alpelisib for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer (NEO-ORB). Clinical Cancer Research 2019, 25: 2975-2987. PMID: 30723140, PMCID: PMC6522303, DOI: 10.1158/1078-0432.ccr-18-3160.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAntineoplastic Combined Chemotherapy ProtocolsBiomarkers, TumorBreast NeoplasmsCell ProliferationClass I Phosphatidylinositol 3-KinasesFemaleHigh-Throughput Nucleotide SequencingHumansLetrozoleMiddle AgedMutationNeoadjuvant TherapyReceptor, ErbB-2Receptors, EstrogenReceptors, ProgesteroneSignal TransductionThiazolesTreatment OutcomeConceptsObjective response rateMetastatic breast cancerBreast cancerResponse rateLetrozole treatmentPathologic complete response ratePhase II Randomized StudyHuman epidermal growth factor receptor 2Epidermal growth factor receptor 2Human epidermal growth factor receptorComplete response rateHormone receptor positiveMaculo-papular rashProgression-free survivalGrowth factor receptor 2Early breast cancerPhase I studiesWild-type cohortsFactor receptor 2Epidermal growth factor receptorCombination of alpelisibGrowth factor receptorNeoadjuvant letrozoleNeoadjuvant settingPrimary endpoint
2017
CDK4/6 inhibition triggers anti-tumour immunity
Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, Khan N, Ubellacker JM, Xie S, Metzger-Filho O, Hoog J, Ellis MJ, Ma CX, Ramm S, Krop IE, Winer EP, Roberts TM, Kim HJ, McAllister SS, Zhao JJ. CDK4/6 inhibition triggers anti-tumour immunity. Nature 2017, 548: 471-475. PMID: 28813415, PMCID: PMC5570667, DOI: 10.1038/nature23465.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigen PresentationBiological MimicryBreast NeoplasmsCell Cycle CheckpointsCell Line, TumorCell ProliferationCyclin-Dependent Kinase 4Cyclin-Dependent Kinase 6Disease Models, AnimalFemaleHumansInterferonsMicePhosphorylationProtein Kinase InhibitorsRepressor ProteinsRNA, Double-StrandedSignal TransductionT-Lymphocytes, RegulatoryTranscriptomeViruses
2016
The Role of Proliferation in Determining Response to Neoadjuvant Chemotherapy in Breast Cancer: A Gene Expression–Based Meta-Analysis
Stover DG, Coloff JL, Barry WT, Brugge JS, Winer EP, Selfors LM. The Role of Proliferation in Determining Response to Neoadjuvant Chemotherapy in Breast Cancer: A Gene Expression–Based Meta-Analysis. Clinical Cancer Research 2016, 22: 6039-6050. PMID: 27330058, PMCID: PMC5161615, DOI: 10.1158/1078-0432.ccr-16-0471.Peer-Reviewed Original ResearchConceptsTriple-negative breast cancerNeoadjuvant chemotherapyPathologic complete responseBreast cancerGene expression signaturesComplete responseExpression signaturesPrimary breast cancer biopsiesImmune activation signatureBreast cancer biopsiesRole of proliferationClinicopathologic characteristicsSignature scoreImmune activityCancer biopsiesPAM50 subtypesBreast tumorsProliferation differencesCancerActivation signatureNeoadjuvant chemosensitivityChemosensitivityTumorsDNA damageScoresResponse and resistance to BET bromodomain inhibitors in triple-negative breast cancer
Shu S, Lin CY, He HH, Witwicki RM, Tabassum DP, Roberts JM, Janiszewska M, Jin Huh S, Liang Y, Ryan J, Doherty E, Mohammed H, Guo H, Stover DG, Ekram MB, Peluffo G, Brown J, D’Santos C, Krop I, Dillon D, McKeown M, Ott C, Qi J, Ni M, Rao P, Duarte M, Wu S, Chiang C, Anders L, Young R, Winer E, Letai A, Barry W, Carroll J, Long H, Brown M, Shirley Liu X, Meyer C, Bradner J, Polyak K. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature 2016, 529: 413-417. PMID: 26735014, PMCID: PMC4854653, DOI: 10.1038/nature16508.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAzepinesBinding, CompetitiveCasein Kinase IICell Cycle ProteinsCell Line, TumorCell ProliferationChromatinDrug Resistance, NeoplasmEpigenesis, GeneticFemaleGene Expression Regulation, NeoplasticGenome, HumanHumansMediator Complex Subunit 1MiceNuclear ProteinsPhosphorylationPhosphoserineProtein BindingProtein Phosphatase 2Protein Structure, TertiaryProteomicsTranscription FactorsTranscription, GeneticTriazolesTriple Negative Breast NeoplasmsXenograft Model Antitumor Assays
2013
PAM50 proliferation score as a predictor of weekly paclitaxel benefit in breast cancer
Martín M, Prat A, Rodríguez-Lescure Á, Caballero R, Ebbert MT, Munárriz B, Ruiz-Borrego M, Bastien RR, Crespo C, Davis C, Rodríguez CA, López-Vega JM, Furió V, García AM, Casas M, Ellis MJ, Berry DA, Pitcher BN, Harris L, Ruiz A, Winer E, Hudis C, Stijleman IJ, Tuck DP, Carrasco E, Perou CM, Bernard PS. PAM50 proliferation score as a predictor of weekly paclitaxel benefit in breast cancer. Breast Cancer Research And Treatment 2013, 138: 457-466. PMID: 23423445, PMCID: PMC3608881, DOI: 10.1007/s10549-013-2416-2.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic Combined Chemotherapy ProtocolsBreast NeoplasmsCell ProliferationClinical Trials, Phase III as TopicCyclophosphamideEpirubicinFemaleFluorouracilHumansKaplan-Meier EstimateKi-67 AntigenMiddle AgedMulticenter Studies as TopicMultivariate AnalysisPaclitaxelProportional Hazards ModelsProspective StudiesRandomized Controlled Trials as TopicTreatment OutcomeConceptsGroup of patientsWeekly paclitaxelOverall survivalPAM50 subtypesProliferation scoreBreast cancerNode-positive operable breast cancerMultivariable Cox regression analysisLow proliferation statusAnthracycline-containing chemotherapyOperable breast cancerPhase III trialsSubset of patientsCox regression analysisClinical-pathological variablesFEC armMedian followAdjuvant therapySecondary endpointsIII trialsPathological variablesHistologic gradeClinical trialsAdjuvant FECKi-67