2022
Disrupted Topological Organization of White Matter Network in Angelman Syndrome
Wei L, Du X, Yang Z, Ding M, Yang B, Wang J, Long S, Qiao Z, Jiang Y, Wang Y, Wang H. Disrupted Topological Organization of White Matter Network in Angelman Syndrome. Journal Of Magnetic Resonance Imaging 2022, 57: 1212-1221. PMID: 35856797, DOI: 10.1002/jmri.28360.Peer-Reviewed Original ResearchComparative Proteome and Cis-Regulatory Element Analysis Reveals Specific Molecular Pathways Conserved in Dog and Human Brains
Hong H, Zhao Z, Huang X, Guo C, Zhao H, Wang GD, Zhang YP, Zhao JP, Shi J, Wu QF, Jiang YH, Wang Y, Li LM, Du Z, Zhang YQ, Xiong Y. Comparative Proteome and Cis-Regulatory Element Analysis Reveals Specific Molecular Pathways Conserved in Dog and Human Brains. Molecular & Cellular Proteomics 2022, 21: 100261. PMID: 35738554, PMCID: PMC9304787, DOI: 10.1016/j.mcpro.2022.100261.Peer-Reviewed Original ResearchBrain-wide electrical dynamics encode individual appetitive social behavior
Mague SD, Talbot A, Blount C, Walder-Christensen KK, Duffney LJ, Adamson E, Bey AL, Ndubuizu N, Thomas GE, Hughes DN, Grossman Y, Hultman R, Sinha S, Fink AM, Gallagher NM, Fisher RL, Jiang YH, Carlson DE, Dzirasa K. Brain-wide electrical dynamics encode individual appetitive social behavior. Neuron 2022, 110: 1728-1741.e7. PMID: 35294900, PMCID: PMC9126093, DOI: 10.1016/j.neuron.2022.02.016.Peer-Reviewed Original Research
2020
Altered striatum centered brain structures in SHANK3 deficient Chinese children with genotype and phenotype profiling
Liu C, Li D, Yang H, Li H, Xu Q, Zhou B, Hu C, Li C, Wang Y, Qiao Z, Jiang YH, Xu X. Altered striatum centered brain structures in SHANK3 deficient Chinese children with genotype and phenotype profiling. Progress In Neurobiology 2020, 200: 101985. PMID: 33388374, PMCID: PMC8572121, DOI: 10.1016/j.pneurobio.2020.101985.Peer-Reviewed Original ResearchConceptsTract-based spatial statisticsVoxel-based morphometryUnderlying neuropathological mechanismsNeuropathological mechanismsDeficient childrenBrain structuresMiddle cerebral peduncleAutism spectrum disorderAbnormal neural circuitsPosterior thalamic radiationGray matter volumeFunctional connectivity studiesSuperior longitudinal fasciculusStudy of subjectsCerebral peduncleInternal capsuleRisk factorsDental abnormalitiesCorpus callosumCommissural fibersHematological problemsCorona radiataDorsal striatumNeurobehavioral evaluationAnteverted nares
2019
De Novo Missense Variants in FBXW11 Cause Diverse Developmental Phenotypes Including Brain, Eye, and Digit Anomalies
Holt RJ, Young RM, Crespo B, Ceroni F, Curry CJ, Bellacchio E, Bax DA, Ciolfi A, Simon M, Fagerberg CR, van Binsbergen E, De Luca A, Memo L, Dobyns WB, Mohammed AA, Clokie SJH, Seco C, Jiang YH, Sørensen KP, Andersen H, Sullivan J, Powis Z, Chassevent A, Smith-Hicks C, Petrovski S, Antoniadi T, Shashi V, Gelb BD, Wilson SW, Gerrelli D, Tartaglia M, Chassaing N, Calvas P, Ragge NK. De Novo Missense Variants in FBXW11 Cause Diverse Developmental Phenotypes Including Brain, Eye, and Digit Anomalies. American Journal Of Human Genetics 2019, 105: 640-657. PMID: 31402090, PMCID: PMC6731360, DOI: 10.1016/j.ajhg.2019.07.005.Peer-Reviewed Original ResearchConceptsF-box (SCF) ubiquitin ligase complexF-box proteinsMultiple developmental processesPectoral fin developmentSubstrate-binding domainUbiquitin ligase complexGli transcription factorsHuman developmental disordersSecond-generation sequencingDe novo missense variantsWhole-genome sequencingSkp1-CullinDevelopmental phenotypesLigase complexFin developmentResidue clustersTranscription factorsProteasomal degradationEye developmentNovo missense variantsDevelopmental processesFBXW11Genome sequencingEmbryonic tissuesUnderdeveloped eyes
2018
Epigenetic dysregulation of Oxtr in Tet1-deficient mice has implications for neuropsychiatric disorders
Towers AJ, Tremblay MW, Chung L, Li XL, Bey AL, Zhang W, Cao X, Wang X, Wang P, Duffney LJ, Siecinski SK, Xu S, Kim Y, Kong X, Gregory S, Xie W, Jiang YH. Epigenetic dysregulation of Oxtr in Tet1-deficient mice has implications for neuropsychiatric disorders. JCI Insight 2018, 3: e120592. PMID: 30518695, PMCID: PMC6328031, DOI: 10.1172/jci.insight.120592.Peer-Reviewed Original ResearchCRISPR/Cas9-mediated disruption of SHANK3 in monkey leads to drug-treatable autism-like symptoms
Tu Z, Zhao H, Li B, Yan S, Wang L, Tang Y, Li Z, Bai D, Li C, Lin Y, Li Y, Liu J, Xu H, Guo X, Jiang YH, Zhang YQ, Li XJ. CRISPR/Cas9-mediated disruption of SHANK3 in monkey leads to drug-treatable autism-like symptoms. Human Molecular Genetics 2018, 28: 561-571. PMID: 30329048, PMCID: PMC6489410, DOI: 10.1093/hmg/ddy367.Peer-Reviewed Original ResearchConceptsAutism spectrum disorderCynomolgus monkey modelAutism-like symptomsPathogenesis of ASDPostsynaptic scaffold proteinsNon-human primatesFluoxetine treatmentBrain network activityMonkey modelMouse modelBehavioral abnormalitiesCausative roleExperimental therapeuticsSHANK3 mutationsBrain structuresSHANK3 geneTranslational researchMonogenic mutationsBrain activitySpecies-dependent differencesPositron emissionNetwork activityCRISPR/Cas9-mediated disruptionMonkeysSpectrum disorderModeling autism in non‐human primates: Opportunities and challenges
Zhao H, Jiang Y, Zhang YQ. Modeling autism in non‐human primates: Opportunities and challenges. Autism Research 2018, 11: 686-694. PMID: 29573234, PMCID: PMC6188783, DOI: 10.1002/aur.1945.Peer-Reviewed Original Research
2017
Cellular and Circuitry Bases of Autism: Lessons Learned from the Temporospatial Manipulation of Autism Genes in the Brain
Hulbert SW, Jiang YH. Cellular and Circuitry Bases of Autism: Lessons Learned from the Temporospatial Manipulation of Autism Genes in the Brain. Neuroscience Bulletin 2017, 33: 205-218. PMID: 28271437, PMCID: PMC5360850, DOI: 10.1007/s12264-017-0112-7.Peer-Reviewed Original ResearchConceptsAutism spectrum disorderDifferent neurotransmitter systemsCell typesNeurotransmitter systemsInhibitory neuronsAdult miceTransgenic miceBrain regionsCre linesDevelopmental time periodCre-loxPCertain cell typesMiceCore ASD symptomsDisordersMolecular underpinningsTime periodSpectrum disorderASD symptomsGene expressionMutations
2015
Monogenic mouse models of autism spectrum disorders: Common mechanisms and missing links
Hulbert SW, Jiang Y. Monogenic mouse models of autism spectrum disorders: Common mechanisms and missing links. Neuroscience 2015, 321: 3-23. PMID: 26733386, PMCID: PMC4803542, DOI: 10.1016/j.neuroscience.2015.12.040.Peer-Reviewed Original Research
2014
A genomic copy number variant analysis implicates the MBD5 and HNRNPUgenes in Chinese children with infantile spasms and expands the clinical spectrum of 2q23.1 deletion
Du X, An Y, Yu L, Liu R, Qin Y, Guo X, Sun D, Zhou S, Wu B, Jiang YH, Wang Y. A genomic copy number variant analysis implicates the MBD5 and HNRNPUgenes in Chinese children with infantile spasms and expands the clinical spectrum of 2q23.1 deletion. BMC Medical Genomics 2014, 15: 62. PMID: 24885232, PMCID: PMC4061518, DOI: 10.1186/1471-2350-15-62.Peer-Reviewed Original ResearchMeSH Keywords1-Alkyl-2-acetylglycerophosphocholine EsteraseAge of OnsetBrainChild, PreschoolChromosome DeletionChromosomes, Human, Pair 1Chromosomes, Human, Pair 17Chromosomes, Human, Pair 2DNA Copy Number VariationsDNA-Binding ProteinsFaciesFemaleFoot Deformities, CongenitalHand Deformities, CongenitalHeterogeneous-Nuclear RibonucleoproteinsHumansInfantInfant, NewbornMagnetic Resonance ImagingMaleMicrotubule-Associated ProteinsPhenotypeSpasms, InfantileConceptsInfantile spasmsEpileptic encephalopathyChinese childrenCNV lossDistinct clinical presentationsCopy number variantsPathogenicity of CNVsAutism spectrum disorderCausative genesMajority of casesWhole-exome sequencingRole of CNVsGeneralized seizuresClinical featuresClinical presentationClinical spectrumPrimary diagnosisSevere developmental disabilitiesSpasmConclusionOur findingsMBD5 geneReal-time qPCRExome sequencingGenetic factorsDifferent ethnic backgrounds
2013
Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders
Zhu L, Wang X, Li XL, Towers A, Cao X, Wang P, Bowman R, Yang H, Goldstein J, Li YJ, Jiang YH. Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Human Molecular Genetics 2013, 23: 1563-1578. PMID: 24186872, PMCID: PMC3929093, DOI: 10.1093/hmg/ddt547.Peer-Reviewed Original ResearchConceptsAlternative splicingMolecular basisDNA methylation inhibitorDNA methylation profilingOverall DNA methylationRole of genesIsoform-specific expressionIntragenic promotersEpigenetic modificationsMRNA splice variantsDNA methylationCpG islandsMethylation inhibitorMethylation patternsEpigenetic dysregulationMethylation profilingEpigenetic causesCGIs 4Expression of SHANK3CGI-2Etiology of ASDSplice variantsMethylationCultured cellsAltered expressionDeficiency of Asparagine Synthetase Causes Congenital Microcephaly and a Progressive Form of Encephalopathy
Ruzzo EK, Capo-Chichi JM, Ben-Zeev B, Chitayat D, Mao H, Pappas AL, Hitomi Y, Lu YF, Yao X, Hamdan FF, Pelak K, Reznik-Wolf H, Bar-Joseph I, Oz-Levi D, Lev D, Lerman-Sagie T, Leshinsky-Silver E, Anikster Y, Ben-Asher E, Olender T, Colleaux L, Décarie JC, Blaser S, Banwell B, Joshi RB, He XP, Patry L, Silver RJ, Dobrzeniecka S, Islam MS, Hasnat A, Samuels ME, Aryal DK, Rodriguiz RM, Jiang YH, Wetsel WC, McNamara JO, Rouleau GA, Silver DL, Lancet D, Pras E, Mitchell GA, Michaud JL, Goldstein DB. Deficiency of Asparagine Synthetase Causes Congenital Microcephaly and a Progressive Form of Encephalopathy. Neuron 2013, 80: 429-441. PMID: 24139043, PMCID: PMC3820368, DOI: 10.1016/j.neuron.2013.08.013.Peer-Reviewed Original ResearchConceptsCongenital microcephalyProgressive cerebral atrophyStructural brain abnormalitiesCerebral atrophyNeuronal damageEnhanced excitabilityIntractable seizuresAsparagine depletionNeurological impairmentBrain abnormalitiesCortical thicknessLoss of functionASNS deficiencyProgressive formMutant micePatient phenotypesIntellectual disabilityASNS geneMicrocephalyMissense mutationsBrainDeficiencyAspartate/MutationsRecessive mutations
2004
A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A
Jiang Y, Sahoo T, Michaelis RC, Bercovich D, Bressler J, Kashork CD, Liu Q, Shaffer LG, Schroer RJ, Stockton DW, Spielman RS, Stevenson RE, Beaudet AL. A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. American Journal Of Medical Genetics Part A 2004, 131A: 1-10. PMID: 15389703, DOI: 10.1002/ajmg.a.30297.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAutistic DisorderBlotting, SouthernBlotting, WesternBrainChromosome AberrationsChromosomes, Human, Pair 15Deoxyribonuclease BamHIDeoxyribonuclease HpaIIDNADNA MethylationFemaleGene DuplicationHumansIn Situ Hybridization, FluorescenceMaleModels, GeneticMutationPedigreeUbiquitin-Protein LigasesConceptsOligogenic inheritanceComplex disease traitsGenome-wide studiesAbnormal DNA methylationE6-AP proteinDe novoGenetic modelsRole of UBE3AUbiquitin ligaseDNA methylationEpigenetic abnormalitiesDisease traitsAutism brainPaternal duplicationChromosome 15qUBE3AGenetic contributionRegion downstreamGenesOligogenic modelInheritanceProteinNovoLigaseBrain samples
1999
Paternal Deletion from Snrpn to Ube3a in the Mouse Causes Hypotonia, Growth Retardation and Partial Lethality and Provides Evidence for a Gene Contributing to Prader-Willi Syndrome
Tsai T, Jiang Y, Bressler J, Armstrong D, Beaudet A. Paternal Deletion from Snrpn to Ube3a in the Mouse Causes Hypotonia, Growth Retardation and Partial Lethality and Provides Evidence for a Gene Contributing to Prader-Willi Syndrome. Human Molecular Genetics 1999, 8: 1357-1364. PMID: 10400982, DOI: 10.1093/hmg/8.8.1357.Peer-Reviewed Original ResearchMeSH KeywordsAbnormalities, MultipleAnimalsAutoantigensBrainChromosome DeletionFemaleGene ExpressionGenomic ImprintingHumansLigasesMaleMiceMice, Inbred StrainsMuscle HypotoniaMutagenesis, Site-DirectedOpen Reading FramesPedigreePhenotypePrader-Willi SyndromeRibonucleoproteins, Small NuclearRNASnRNP Core ProteinsUbiquitin-Protein LigasesConceptsOpen reading framePartial lethalityExon 2Pathogenesis of PWSUpstream open reading framesObvious phenotypic abnormalitiesMouse chromosome 7CGenomic imprintsImprinted expressionPrader-Willi syndromeHuman translocationImprinted genesGene ContributingStructural genePaternal deficiencyChromosome 7CPaternal chromosomesGenotype/phenotype correlationHuman chromosomesMethylation patternsImprinting mutationsReading frameMultiple genesLoss of expressionSNRPNGenetics of Angelman Syndrome
Jiang Y, Lev-Lehman E, Bressler J, Tsai T, Beaudet A. Genetics of Angelman Syndrome. American Journal Of Human Genetics 1999, 65: 1-6. PMID: 10364509, PMCID: PMC1378067, DOI: 10.1086/302473.Peer-Reviewed Original Research
1998
Mutation of the Angelman Ubiquitin Ligase in Mice Causes Increased Cytoplasmic p53 and Deficits of Contextual Learning and Long-Term Potentiation
Jiang Y, Armstrong D, Albrecht U, Atkins C, Noebels J, Eichele G, Sweatt J, Beaudet A. Mutation of the Angelman Ubiquitin Ligase in Mice Causes Increased Cytoplasmic p53 and Deficits of Contextual Learning and Long-Term Potentiation. Neuron 1998, 21: 799-811. PMID: 9808466, DOI: 10.1016/s0896-6273(00)80596-6.Peer-Reviewed Original ResearchConceptsLong-term potentiationMaternal deficiencyAngelman syndromeNormal baseline synaptic transmissionBaseline synaptic transmissionE6-AP ubiquitinMotor dysfunctionSynaptic transmissionPhenotype of miceMice causesPotential biochemical basisPostmitotic neuronsLearning deficitsMiceDegradation of p53E6 proteinPotentiationP53Cytoplasmic p53UBE3ACytoplasmic abundanceDeficitsDeficiencyPhenotypeBiochemical basis