2021
Vulnerability of cholecystokinin-expressing GABAergic interneurons in the unilateral intrahippocampal kainate mouse model of temporal lobe epilepsy
Kang YJ, Clement EM, Park IH, Greenfield LJ, Smith BN, Lee SH. Vulnerability of cholecystokinin-expressing GABAergic interneurons in the unilateral intrahippocampal kainate mouse model of temporal lobe epilepsy. Experimental Neurology 2021, 342: 113724. PMID: 33915166, PMCID: PMC8192495, DOI: 10.1016/j.expneurol.2021.113724.Peer-Reviewed Original ResearchConceptsTemporal lobe epilepsyIntrahippocampal kainate mouse modelVentral CA1 regionEpileptic miceCA1 pyramidal cellsSclerotic hippocampusPyramidal cellsSham controlsSpontaneous seizuresLobe epilepsyCA1 regionMouse modelFrequency of IPSCsNetwork oscillationsRecurrent spontaneous seizuresNumber of boutonsHippocampal theta oscillationsIpsilateral hippocampusElectrical recordingsVentral hippocampusCA1 layerGABAergic interneuronsStratum pyramidaleDorsal hippocampusBehavioral comorbidities
2020
Implantation of the clinical‐grade human neural stem cell line, CTX0E03, rescues the behavioral and pathological deficits in the quinolinic acid‐lesioned rodent model of Huntington's disease
Yoon Y, Kim HS, Jeon I, Noh J, Park HJ, Lee S, Park I, Stevanato L, Hicks C, Corteling R, Barker RA, Sinden JD, Song J. Implantation of the clinical‐grade human neural stem cell line, CTX0E03, rescues the behavioral and pathological deficits in the quinolinic acid‐lesioned rodent model of Huntington's disease. Stem Cells 2020, 38: 936-947. PMID: 32374064, PMCID: PMC7496241, DOI: 10.1002/stem.3191.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorDisease Models, AnimalHumansHuntington DiseaseMiceNeoplasm GradingNeural Stem CellsQuinolinic AcidConceptsMedium spiny neuronsNeural stem cell lineHuntington's diseaseQuinolinic acid (QA) lesion rat modelChronic ischemic stroke patientsStriatal medium spiny neuronsCell linesImmortalized neural stem cell linesIschemic stroke patientsDisease-modifying therapiesSignals of efficacyGlial scar formationHost brain tissueHuman neural stem cell lineSignificant behavioral improvementAutosomal dominant neurodegenerative diseaseCTX0E03 cellsEndogenous neurogenesisBDNF expressionGABAergic neuronsHD patientsStroke patientsFluoro-GoldRetrograde labelSpiny neurons
2013
Therapeutic Potential of Human Induced Pluripotent Stem Cells in Experimental Stroke
Chang DJ, Lee N, Park IH, Choi C, Jeon I, Kwon J, Oh SH, Shin DA, Tae J, Lee DR, Lee H, Hong K, Daley G, Song J, Moon H. Therapeutic Potential of Human Induced Pluripotent Stem Cells in Experimental Stroke. Cell Transplantation 2013, 22: 1427-1440. PMID: 23044029, DOI: 10.3727/096368912x657314.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBehavior, AnimalCell DifferentiationCell LineCell TrackingDisease Models, AnimalGliosisHumansInduced Pluripotent Stem CellsInfarction, Middle Cerebral ArteryInflammationMagnetic Resonance ImagingMaleMiceNeural Stem CellsNeurogenesisNeuronsRatsRats, Sprague-DawleyStem Cell TransplantationStrokeConceptsMiddle cerebral artery occlusionNeural precursor cellsNeural stem cellsStroke-induced inflammatory responseTherapeutic potentialMCAO stroke modelCerebral artery occlusionPeri-infarct areaTreatment of strokeLimited therapeutic optionsStem cellsAutologous cell therapyEndogenous neurogenesisExperimental strokePluripotent stem cellsArtery occlusionIschemic strokeBehavioral recoveryTherapeutic optionsNeurological functionInflammatory responseRobust therapeutic potentialStroke modelMRI resultsAnimal models
2012
Neuronal Properties, In Vivo Effects, and Pathology of a Huntington's Disease Patient‐Derived Induced Pluripotent Stem Cells
Jeon I, Lee N, Li J, Park I, Park KS, Moon J, Shim SH, Choi C, Chang D, Kwon J, Oh S, Shin DA, Kim HS, Tae J, Lee DR, Kim M, Kang K, Daley GQ, Brundin P, Song J. Neuronal Properties, In Vivo Effects, and Pathology of a Huntington's Disease Patient‐Derived Induced Pluripotent Stem Cells. Stem Cells 2012, 30: 2054-2062. PMID: 22628015, DOI: 10.1002/stem.1135.Peer-Reviewed Original ResearchConceptsHD-iPSCHD pathologyHuntington's diseaseDisease patientsNeuronal propertiesUnilateral excitotoxic striatal lesionExcitotoxic striatal lesionsSignificant behavioral recoveryStem cellsGABAergic striatal neuronsHuntington's disease patientsCAG repeatsNeuronal cell typesPluripotent stem cellsBehavioral recoveryGABAergic neuronsStriatal lesionsStriatal neuronsRat modelNeonatal brainNovel cell therapiesVivo effectsHD phenotypeCell therapyNovel therapeuticsHumanized murine model for HBV and HCV using human induced pluripotent stem cells
Zhou XL, Sullivan GJ, Sun P, Park IH. Humanized murine model for HBV and HCV using human induced pluripotent stem cells. Archives Of Pharmacal Research 2012, 35: 261-269. PMID: 22370780, PMCID: PMC3731984, DOI: 10.1007/s12272-012-0206-8.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationDisease Models, AnimalHepatitis BHepatitis CHumansInduced Pluripotent Stem CellsMiceConceptsHepatitis B virusHepatitis C virusMouse modelHepatocellular carcinomaHuman hepatocytesPathogenesis of HBVVivo transgenic mouse modelAcute asymptomatic infectionsStem cellsHumanized murine modelHumanized mouse modelHuman HCC cell linesNovel mouse modelTransgenic mouse modelPluripotent stem cellsHCC cell linesHuman primary hepatocytesPrimary human hepatocytesAsymptomatic infectionC virusChronic infectionB virusSusceptibility of hepatocytesImmunodeficient miceMurine model
2011
Transplantation of Adult Mouse iPS Cell-Derived Photoreceptor Precursors Restores Retinal Structure and Function in Degenerative Mice
Tucker BA, Park IH, Qi SD, Klassen HJ, Jiang C, Yao J, Redenti S, Daley GQ, Young MJ. Transplantation of Adult Mouse iPS Cell-Derived Photoreceptor Precursors Restores Retinal Structure and Function in Degenerative Mice. PLOS ONE 2011, 6: e18992. PMID: 21559507, PMCID: PMC3084746, DOI: 10.1371/journal.pone.0018992.Peer-Reviewed Original ResearchConceptsRetinal functionNormal retinal physiologyOuter nuclear layerRetinal precursorsC-MycRetinal degenerative diseasesRetinal outer nuclear layerDelivery of neurotransmittersRetinal degenerative (rd) miceRetinal transplantationSubretinal transplantationNuclear layerAdult miceDsRed miceTransplantationRetinal structureRetinal physiologyPhotoreceptor markersDegenerative diseasesMiceRetroviral inductionFunctional anatomyPhotoreceptor precursorsPhotoreceptor cellsFibroblast-derived iPSCs
2009
Down's syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1
Baek KH, Zaslavsky A, Lynch RC, Britt C, Okada Y, Siarey RJ, Lensch MW, Park IH, Yoon SS, Minami T, Korenberg JR, Folkman J, Daley GQ, Aird WC, Galdzicki Z, Ryeom S. Down's syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature 2009, 459: 1126-1130. PMID: 19458618, PMCID: PMC2724004, DOI: 10.1038/nature08062.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalcineurinCalcium-Binding ProteinsCatecholsCells, CulturedDisease Models, AnimalDNA-Binding ProteinsDown SyndromeEndothelial CellsGene DosageHumansInositolIntracellular Signaling Peptides and ProteinsMiceMice, TransgenicMuscle ProteinsProtein Serine-Threonine KinasesProtein-Tyrosine Kinases