Stephen Strittmatter
Research & Publications
Biography
News
Locations
Research Summary
Neural Repair and Neuro-Degeneration
Neurological injury frequently interrupts connections while sparing nerve cells. Spinal Cord Injury (SCI) is the epitome of a disconnection syndrome, in which surviving neural tissue fails to function due to lost communication at the level of injury. For the organism to regain function, new pathways must form by growth of cut or surviving nerve fibers. Unfortunately, the growth of axons and the rearrangement of brain circuitry are extremely limited in the adult brain and spinal cord.
We focus on understanding the molecular pathways that limit fiber growth and functional rewiring of neuronal circuits during health and disease. Axonal growth encompasses both neural plasticity and repair. Technically, we utilize genome-wide functional screening, chronic in vivo imaging of neuronal connections, genetic alteration of mice and induction of surgical lesions resembling clinical SCI and Stroke. In particular, we have found that the NogoReceptor (NgR1) pathway mediating myelin inhibition of axonal growth plays a role in titrating anatomical plasticity in the adult CNS.
In Alzheimer's Disease and several other neurodegenerative conditions, nerve cells are lost over time. Molecular contributors to this pathology have been discovered by genetic methods, but their mechanism of action has remained poorly understood. We have focused on defining the pathophysiological action of Amyloid-beta (Aß) peptide oligomers in Alzheimer's Disease, and on the role of secreted Progranulin in Fronto-Temporal Dementia. For both of these molecules, interaction with the specific receptors on the neuronal surface is crucial. We utilize receptor ligand binding assays, expression cloning, electrophysiology, genetics and mouse behavior to study these pathways. Interrupting an Aß oligomer signal transduction pharamacologically rescues synapses and memory function in Alzheimer's disease models. These novel approaches are being translated to clinical trials.
Coauthors
Research Interests
Alzheimer Disease; Axons; Dementia; Spinal Cord Injuries; Regenerative Medicine; Frontotemporal Dementia
Research Images
Selected Publications
- TMEM106B Puncta Is Increased in Multiple Sclerosis Plaques, and Reduced Protein in Mice Results in Delayed Lipid Clearance Following CNS InjuryShafit-Zagardo B, Sidoli S, Goldman J, DuBois J, Corboy J, Strittmatter S, Guzik H, Edema U, Arackal A, Botbol Y, Merheb E, Nagra R, Graff S. TMEM106B Puncta Is Increased in Multiple Sclerosis Plaques, and Reduced Protein in Mice Results in Delayed Lipid Clearance Following CNS Injury Cells 2023, 12: 1734. PMID: 37443768, PMCID: PMC10340176, DOI: 10.3390/cells12131734.
- Nogo receptor-Fc delivered by haematopoietic cells enhances neurorepair in a multiple sclerosis modelYe S, Theotokis P, Lee J, Kim M, Nheu D, Ellen O, Bedford T, Ramanujam P, Wright D, McDonald S, Alrehaili A, Bakhuraysah M, Kang J, Siatskas C, Tremblay C, Curtis D, Grigoriadis N, Monif M, Strittmatter S, Petratos S. Nogo receptor-Fc delivered by haematopoietic cells enhances neurorepair in a multiple sclerosis model Brain Communications 2023, 5: fcad108. PMID: 37091588, PMCID: PMC10116608, DOI: 10.1093/braincomms/fcad108.
- Decreased synaptic vesicle glycoprotein 2A binding in a rodent model of familial Alzheimer's disease detected by [18F]SDM-16Zheng C, Toyonaga T, Chen B, Nicholson L, Mennie W, Liu M, Spurrier J, Deluca K, Strittmatter S, Carson R, Huang Y, Cai Z. Decreased synaptic vesicle glycoprotein 2A binding in a rodent model of familial Alzheimer's disease detected by [18F]SDM-16 Frontiers In Neurology 2023, 14: 1045644. PMCID: PMC9945093, DOI: 10.3389/fneur.2023.1045644.
- Decreased synaptic vesicle glycoprotein 2A binding in a rodent model of familial Alzheimer's disease detected by [18F]SDM-16Zheng C, Toyonaga T, Chen B, Nicholson L, Mennie W, Liu M, Spurrier J, Deluca K, Strittmatter S, Carson R, Huang Y, Cai Z. Decreased synaptic vesicle glycoprotein 2A binding in a rodent model of familial Alzheimer's disease detected by [18F]SDM-16 Frontiers In Neurology 2023, 14: 1045644. PMID: 36846134, PMCID: PMC9945093, DOI: 10.3389/fneur.2023.1045644.
- Concerted roles of LRRTM1 and SynCAM 1 in organizing prefrontal cortex synapses and cognitive functionsde Arce K, Ribic A, Chowdhury D, Watters K, Thompson G, Sanganahalli B, Lippard E, Rohlmann A, Strittmatter S, Missler M, Hyder F, Biederer T. Concerted roles of LRRTM1 and SynCAM 1 in organizing prefrontal cortex synapses and cognitive functions Nature Communications 2023, 14: 459. PMID: 36709330, PMCID: PMC9884278, DOI: 10.1038/s41467-023-36042-w.
- Prion Protein Complex with mGluR5 Mediates Amyloid-ß Synaptic Loss in Alzheimer’s DiseaseRoseman G, Fu L, Strittmatter S. Prion Protein Complex with mGluR5 Mediates Amyloid-ß Synaptic Loss in Alzheimer’s Disease 2023, 467-481. DOI: 10.1007/978-3-031-20565-1_22.
- Visualization of synaptic vesicle protein 2A in a rodent model of familial Alzheimer’s disease with a metabolically stable PET probeZheng C, Chen B, Toyonaga T, Liu M, Nicholson L, Deluca K, Strittmatter S, Carson R, Huang Y, Cai Z. Visualization of synaptic vesicle protein 2A in a rodent model of familial Alzheimer’s disease with a metabolically stable PET probe Alzheimer's & Dementia 2022, 18 DOI: 10.1002/alz.063890.
- Targeting RTN4/NoGo-Receptor reduces levels of ALS protein ataxin-2Rodriguez CM, Bechek SC, Jones GL, Nakayama L, Akiyama T, Kim G, Solow-Cordero DE, Strittmatter SM, Gitler AD. Targeting RTN4/NoGo-Receptor reduces levels of ALS protein ataxin-2 Cell Reports 2022, 41: 111505. PMID: 36288715, PMCID: PMC9664481, DOI: 10.1016/j.celrep.2022.111505.
- Molecular and cellular evolution of the primate dorsolateral prefrontal cortexMa S, Skarica M, Li Q, Xu C, Risgaard RD, Tebbenkamp ATN, Mato-Blanco X, Kovner R, Krsnik Ž, de Martin X, Luria V, Martí-Pérez X, Liang D, Karger A, Schmidt DK, Gomez-Sanchez Z, Qi C, Gobeske KT, Pochareddy S, Debnath A, Hottman CJ, Spurrier J, Teo L, Boghdadi AG, Homman-Ludiye J, Ely JJ, Daadi EW, Mi D, Daadi M, Marín O, Hof PR, Rasin MR, Bourne J, Sherwood CC, Santpere G, Girgenti MJ, Strittmatter SM, Sousa AMM, Sestan N. Molecular and cellular evolution of the primate dorsolateral prefrontal cortex Science 2022, 377: eabo7257. PMID: 36007006, PMCID: PMC9614553, DOI: 10.1126/science.abo7257.
- IFITM3 restricts virus-induced inflammatory cytokine production by limiting Nogo-B mediated TLR responsesClement M, Forbester J, Marsden M, Sabberwal P, Sommerville M, Wellington D, Dimonte S, Clare S, Harcourt K, Yin Z, Nobre L, Antrobus R, Jin B, Chen M, Makvandi-Nejad S, Lindborg J, Strittmatter S, Weekes M, Stanton R, Dong T, Humphreys I. IFITM3 restricts virus-induced inflammatory cytokine production by limiting Nogo-B mediated TLR responses Nature Communications 2022, 13: 5294. PMID: 36075894, PMCID: PMC9454482, DOI: 10.1038/s41467-022-32587-4.
- Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1QSpurrier J, Nicholson L, Fang XT, Stoner AJ, Toyonaga T, Holden D, Siegert TR, Laird W, Allnutt MA, Chiasseu M, Brody AH, Takahashi H, Nies SH, Pérez-Cañamás A, Sadasivam P, Lee S, Li S, Zhang L, Huang YH, Carson RE, Cai Z, Strittmatter SM. Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1Q Science Translational Medicine 2022, 14: eabi8593. PMID: 35648810, PMCID: PMC9554345, DOI: 10.1126/scitranslmed.abi8593.
- Alzheimer risk gene product Pyk2 suppresses tau phosphorylation and phenotypic effects of tauopathyBrody AH, Nies SH, Guan F, Smith LM, Mukherjee B, Salazar SA, Lee S, Lam TKT, Strittmatter SM. Alzheimer risk gene product Pyk2 suppresses tau phosphorylation and phenotypic effects of tauopathy Molecular Neurodegeneration 2022, 17: 32. PMID: 35501917, PMCID: PMC9063299, DOI: 10.1186/s13024-022-00526-y.
- Multimodal imaging of synaptic vesicles with a single probeAn SJ, Stagi M, Gould TJ, Wu Y, Mlodzianoski M, Rivera-Molina F, Toomre D, Strittmatter SM, De Camilli P, Bewersdorf J, Zenisek D. Multimodal imaging of synaptic vesicles with a single probe Cell Reports Methods 2022, 2: 100199. PMID: 35497490, PMCID: PMC9046237, DOI: 10.1016/j.crmeth.2022.100199.
- Rabphilin3A reduces integrin-dependent growth cone signaling to restrict axon regeneration after traumaSekine Y, Kannan R, Wang X, Strittmatter SM. Rabphilin3A reduces integrin-dependent growth cone signaling to restrict axon regeneration after trauma Experimental Neurology 2022, 353: 114070. PMID: 35398339, PMCID: PMC9555232, DOI: 10.1016/j.expneurol.2022.114070.
- An unexpected protein aggregate in diseased and ageing brainsTakahashi H, Strittmatter SM. An unexpected protein aggregate in diseased and ageing brains Nature 2022, 605: 227-228. PMID: 35379977, DOI: 10.1038/d41586-022-00873-2.
- PET Imaging of Synaptic Density: Challenges and Opportunities of Synaptic Vesicle Glycoprotein 2A PET in Small Animal ImagingToyonaga T, Fesharaki-Zadeh A, Strittmatter SM, Carson RE, Cai Z. PET Imaging of Synaptic Density: Challenges and Opportunities of Synaptic Vesicle Glycoprotein 2A PET in Small Animal Imaging Frontiers In Neuroscience 2022, 16: 787404. PMID: 35345546, PMCID: PMC8957200, DOI: 10.3389/fnins.2022.787404.
- Translational PET Imaging of Spinal Cord Injury with the Serotonin Transporter Tracer [11C]AFMFang H, Rossano S, Wang X, Nabulsi N, Kelley B, Fowles K, Ropchan J, Strittmatter SM, Carson RE, Huang Y. Translational PET Imaging of Spinal Cord Injury with the Serotonin Transporter Tracer [11C]AFM Molecular Imaging And Biology 2022, 24: 560-569. PMID: 35020138, PMCID: PMC9550197, DOI: 10.1007/s11307-021-01698-7.
- NogoA-expressing astrocytes limit peripheral macrophage infiltration after ischemic brain injury in primatesBoghdadi AG, Spurrier J, Teo L, Li M, Skarica M, Cao B, Kwan WC, Merson TD, Nilsson SK, Sestan N, Strittmatter SM, Bourne JA. NogoA-expressing astrocytes limit peripheral macrophage infiltration after ischemic brain injury in primates Nature Communications 2021, 12: 6906. PMID: 34824275, PMCID: PMC8617297, DOI: 10.1038/s41467-021-27245-0.
- Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cellsFranjic D, Skarica M, Ma S, Arellano JI, Tebbenkamp ATN, Choi J, Xu C, Li Q, Morozov YM, Andrijevic D, Vrselja Z, Spajic A, Santpere G, Li M, Zhang S, Liu Y, Spurrier J, Zhang L, Gudelj I, Rapan L, Takahashi H, Huttner A, Fan R, Strittmatter SM, Sousa AMM, Rakic P, Sestan N. Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells Neuron 2021, 110: 452-469.e14. PMID: 34798047, PMCID: PMC8813897, DOI: 10.1016/j.neuron.2021.10.036.
- Spreading of Alzheimer tau seeds is enhanced by aging and template matching with limited impact of amyloid-βNies SH, Takahashi H, Herber CS, Huttner A, Chase A, Strittmatter SM. Spreading of Alzheimer tau seeds is enhanced by aging and template matching with limited impact of amyloid-β Journal Of Biological Chemistry 2021, 297: 101159. PMID: 34480901, PMCID: PMC8477193, DOI: 10.1016/j.jbc.2021.101159.
- Optic nerve regeneration screen identifies multiple genes restricting adult neural repairLindborg JA, Tran NM, Chenette DM, DeLuca K, Foli Y, Kannan R, Sekine Y, Wang X, Wollan M, Kim IJ, Sanes JR, Strittmatter SM. Optic nerve regeneration screen identifies multiple genes restricting adult neural repair Cell Reports 2021, 34: 108777. PMID: 33657370, PMCID: PMC8009559, DOI: 10.1016/j.celrep.2021.108777.
- B-cells expressing NgR1 and NgR3 are localized to EAE-induced inflammatory infiltrates and are stimulated by BAFFBakhuraysah MM, Theotokis P, Lee JY, Alrehaili AA, Aui PM, Figgett WA, Azari MF, Abou-Afech JP, Mackay F, Siatskas C, Alderuccio F, Strittmatter SM, Grigoriadis N, Petratos S. B-cells expressing NgR1 and NgR3 are localized to EAE-induced inflammatory infiltrates and are stimulated by BAFF Scientific Reports 2021, 11: 2890. PMID: 33536561, PMCID: PMC7858582, DOI: 10.1038/s41598-021-82346-6.
- Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources PanelKunkle BW, Schmidt M, Klein HU, Naj AC, Hamilton-Nelson KL, Larson EB, Evans DA, De Jager PL, Crane PK, Buxbaum JD, Ertekin-Taner N, Barnes LL, Fallin MD, Manly JJ, Go RCP, Obisesan TO, Kamboh MI, Bennett DA, Hall KS, Goate AM, Foroud TM, Martin ER, Wang L, Byrd GS, Farrer LA, Haines JL, Schellenberg GD, Mayeux R, Pericak-Vance MA, Reitz C, Abner E, Adams P, Albin R, Apostolova L, Arnold S, Atwood C, Baldwin C, Barber R, Barral S, Beach T, Becker J, Beecham G, Bigio E, Bird T, Blacker D, Boeve B, Bowen J, Boxer A, Burke J, Burns J, Cairns N, Cao C, Carlsson C, Carney R, Carrasquillo M, Cribbs D, Cruchaga C, Dick M, Dickson D, Doody R, Duara R, Faber K, Fairchild T, Fallon K, Fardo D, Farlow M, Ferris S, Frosch M, Galasko D, Gearing M, Geschwind D, Ghetti B, Gilbert J, Green R, Growdon J, Hakonarson H, Hamilton R, Hardy J, Harrell L, Honig L, Huebinger R, Huentelman M, Hulette C, Jarvik G, Jin L, Karydas A, Katz M, Kauwe J, Keene C, Kim R, Kramer J, Lah J, Leung Y, Li G, Lieberman A, Lipton R, Lyketsos C, Malamon J, Marson D, Martiniuk F, Masliah E, McCormick W, McCurry S, McDavid A, McDonough S, McKee A, Mesulam M, Miller B, Miller C, Montine T, Mukherjee S, Myers A, O’Bryant S, Olichney J, Parisi J, Peskind E, Pierce A, Poon W, Potter H, Qu L, Quinn J, Raj A, Raskind M, Reisberg B, Reisch J, Ringman J, Roberson E, Rogaeva E, Rosen H, Royall D, Sager M, Schneider J, Schneider L, Seeley W, Small S, Sonnen J, Spina S, St George-Hyslop P, Stern R, Tanzi R, Troncoso J, Tsuang D, Valladares O, Van Deerlin V, Vardarajan B, Vinters H, Vonsattel J, Weintraub S, Welsh-Bohmer K, Wilhelmsen K, Williamson J, Wingo T, Woltjer R, Wu C, Younkin S, Yu L, Yu C, Zhao Y, Graff-Radford N, Martinez I, Ayodele T, Logue M, Cantwell L, Jean-Francois M, Kuzma A, Adams L, Vance J, Cuccaro M, Chung J, Mez J, Lunetta K, Jun G, Lopez O, Hendrie H, Reiman E, Kowall N, Leverenz J, Small S, Levey A, Golde T, Saykin A, Starks T, Albert M, Hyman B, Petersen R, Sano M, Wisniewski T, Vassar R, Kaye J, Henderson V, DeCarli C, LaFerla F, Brewer J, Miller B, Swerdlow R, Van Eldik L, Paulson H, Trojanowski J, Chui H, Rosenberg R, Craft S, Grabowski T, Asthana S, Morris J, Strittmatter S, Kukull W. Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel JAMA Neurology 2021, 78: 102-113. PMID: 33074286, PMCID: PMC7573798, DOI: 10.1001/jamaneurol.2020.3536.
- PBR28 Brain PET imaging with lipopolysaccharide challenge for the study of microglia function in Alzheimer’s diseaseSalardini A, Hillmer A, Mecca A, Hashemi‐Aghdam A, Laltoo E, Savoia S, O'Dell R, Harris J, Godek T, Nabulsi N, Lim K, Ropchan J, Huang Y, Cosgrove K, Carson R, Strittmatter S, van Dyck C. PBR28 Brain PET imaging with lipopolysaccharide challenge for the study of microglia function in Alzheimer’s disease Alzheimer's & Dementia 2020, 16 DOI: 10.1002/alz.037792.
- 11C‐PBR28 brain PET imaging with lipopolysaccharide challenge for the study of microglia function in Alzheimer’s diseaseSalardini A, Hillmer A, Mecca A, Hashemi‐Aghdam A, Laltoo E, Savoia S, O'Dell R, Harris J, Godek T, Nabulsi N, Lim K, Ropchan J, Huang Y, Cosgrove K, Carson R, Strittmatter S, van Dyck C. 11C‐PBR28 brain PET imaging with lipopolysaccharide challenge for the study of microglia function in Alzheimer’s disease Alzheimer's & Dementia 2020, 16 DOI: 10.1002/alz.043584.
- Elucidating the role of the AD risk factor Pyk2 in tau‐induced neuronal dysfunctionBrody A, Strittmatter S. Elucidating the role of the AD risk factor Pyk2 in tau‐induced neuronal dysfunction Alzheimer's & Dementia 2020, 16 DOI: 10.1002/alz.036625.
- Chronic head injury promotes tau and amyloid‐beta pathology and accelerates cognitive decline in a humanized knock‐in model of Alzheimer's diseaseChiasseu M, Fesharaki A, Saito T, Saido T, Strittmatter S. Chronic head injury promotes tau and amyloid‐beta pathology and accelerates cognitive decline in a humanized knock‐in model of Alzheimer's disease Alzheimer's & Dementia 2020, 16 DOI: 10.1002/alz.047623.
- Quantification of SV2A Binding in Rodent Brain Using [18F]SynVesT-1 and PET ImagingSadasivam P, Fang XT, Toyonaga T, Lee S, Xu Y, Zheng MQ, Spurrier J, Huang Y, Strittmatter SM, Carson RE, Cai Z. Quantification of SV2A Binding in Rodent Brain Using [18F]SynVesT-1 and PET Imaging Molecular Imaging And Biology 2020, 23: 372-381. PMID: 33258040, PMCID: PMC8105262, DOI: 10.1007/s11307-020-01567-9.
- Fronto-temporal dementia risk gene TMEM106B has opposing effects in different lysosomal storage disordersPerez-Canamas A, Takahashi H, Lindborg JA, Strittmatter SM. Fronto-temporal dementia risk gene TMEM106B has opposing effects in different lysosomal storage disorders Brain Communications 2020, 3: fcaa200-. PMID: 33796852, PMCID: PMC7990118, DOI: 10.1093/braincomms/fcaa200.
- Gene-environment interaction promotes Alzheimer's risk as revealed by synergy of repeated mild traumatic brain injury and mouse App knock-inChiasseu M, Fesharaki-Zadeh A, Saito T, Saido TC, Strittmatter SM. Gene-environment interaction promotes Alzheimer's risk as revealed by synergy of repeated mild traumatic brain injury and mouse App knock-in Neurobiology Of Disease 2020, 145: 105059. PMID: 32858147, PMCID: PMC7572902, DOI: 10.1016/j.nbd.2020.105059.
- Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic TauopathyTang SJ, Fesharaki-Zadeh A, Takahashi H, Nies SH, Smith LM, Luo A, Chyung A, Chiasseu M, Strittmatter SM. Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic Tauopathy Acta Neuropathologica Communications 2020, 8: 96. PMID: 32611392, PMCID: PMC7329553, DOI: 10.1186/s40478-020-00976-9.
- Nogo receptor decoy promotes recovery and corticospinal growth in non-human primate spinal cord injury.Wang X, Zhou T, Maynard GD, Terse PS, Cafferty WB, Kocsis JD, Strittmatter SM. Nogo receptor decoy promotes recovery and corticospinal growth in non-human primate spinal cord injury. Brain 2020, 143: 1697-1713. PMID: 32375169, PMCID: PMC7850069, DOI: 10.1093/brain/awaa116.
- The stress-responsive gene GDPGP1/mcp-1 regulates neuronal glycogen metabolism and survivalSchulz A, Sekine Y, Oyeyemi MJ, Abrams AJ, Basavaraju M, Han SM, Groth M, Morrison H, Strittmatter SM, Hammarlund M. The stress-responsive gene GDPGP1/mcp-1 regulates neuronal glycogen metabolism and survival Journal Of Cell Biology 2020, 219: e201807127. PMID: 31968056, PMCID: PMC7041677, DOI: 10.1083/jcb.201807127.
- PET imaging of mGluR5 in Alzheimer’s diseaseMecca AP, McDonald JW, Michalak HR, Godek TA, Harris JE, Pugh EA, Kemp EC, Chen MK, Salardini A, Nabulsi NB, Lim K, Huang Y, Carson RE, Strittmatter SM, van Dyck CH. PET imaging of mGluR5 in Alzheimer’s disease Alzheimer's Research & Therapy 2020, 12: 15. PMID: 31954399, PMCID: PMC6969979, DOI: 10.1186/s13195-020-0582-0.
- A proteolytic C-terminal fragment of Nogo-A (reticulon-4A) is released in exosomes and potently inhibits axon regenerationSekine Y, Lindborg JA, Strittmatter SM. A proteolytic C-terminal fragment of Nogo-A (reticulon-4A) is released in exosomes and potently inhibits axon regeneration Journal Of Biological Chemistry 2019, 295: 2175-2183. PMID: 31748413, PMCID: PMC7039549, DOI: 10.1074/jbc.ra119.009896.
- Effect of AZD0530 on Cerebral Metabolic Decline in Alzheimer Diseasevan Dyck CH, Nygaard HB, Chen K, Donohue MC, Raman R, Rissman RA, Brewer JB, Koeppe RA, Chow TW, Rafii MS, Gessert D, Choi J, Turner RS, Kaye JA, Gale SA, Reiman EM, Aisen PS, Strittmatter SM. Effect of AZD0530 on Cerebral Metabolic Decline in Alzheimer Disease JAMA Neurology 2019, 76: 1219-1229. PMID: 31329216, PMCID: PMC6646979, DOI: 10.1001/jamaneurol.2019.2050.
- IC‐P‐140: ASSOCIATION BETWEEN MGLUR5 AND SYNAPTIC DENSITY: A MULTI‐TRACER STUDY IN HEALTHY AGING AND ALZHEIMER'S DISEASEMecca A, Chen M, Godek T, Harris J, Bartlett H, Toyonaga T, Naganawa M, Salardini A, Arnsten A, Nabulsi N, Lim K, Najafzadeh S, Ropchan J, Huang Y, Carson R, Strittmatter S, Dyck C. IC‐P‐140: ASSOCIATION BETWEEN MGLUR5 AND SYNAPTIC DENSITY: A MULTI‐TRACER STUDY IN HEALTHY AGING AND ALZHEIMER'S DISEASE Alzheimer's & Dementia 2019, 15: p115-p115. DOI: 10.1016/j.jalz.2019.06.4254.
- P2‐349: ASSOCIATION BETWEEN MGLUR5 AND SYNAPTIC DENSITY: A MULTI‐TRACER STUDY OF HEALTHY AGING AND ALZHEIMER'S DISEASEMecca A, Chen M, Godek T, Harris J, Bartlett H, Toyonaga T, Naganawa M, Salardini A, Arnsten A, Nabulsi N, Lim K, Najafzadeh S, Ropchan J, Huang Y, Carson R, Strittmatter S, Dyck C. P2‐349: ASSOCIATION BETWEEN MGLUR5 AND SYNAPTIC DENSITY: A MULTI‐TRACER STUDY OF HEALTHY AGING AND ALZHEIMER'S DISEASE Alzheimer's & Dementia 2019, 15: p729-p729. DOI: 10.1016/j.jalz.2019.06.2756.
- In Vivo Synaptic Density Imaging with 11C-UCB-J Detects Treatment Effects of Saracatinib in a Mouse Model of Alzheimer DiseaseToyonaga T, Smith LM, Finnema SJ, Gallezot JD, Naganawa M, Bini J, Mulnix T, Cai Z, Ropchan J, Huang Y, Strittmatter SM, Carson RE. In Vivo Synaptic Density Imaging with 11C-UCB-J Detects Treatment Effects of Saracatinib in a Mouse Model of Alzheimer Disease Journal Of Nuclear Medicine 2019, 60: 1780-1786. PMID: 31101744, PMCID: PMC6894376, DOI: 10.2967/jnumed.118.223867.
- Limiting neuronal nogo receptor 1 signaling during experimental autoimmune encephalomyelitis (EAE) preserves axonal transport and abrogates inflammatory demyelinationLee JY, Kim MJ, Thomas S, Oorschot V, Ramm G, Aui PM, Sekine Y, Deliyanti D, Wilkinson-Berka J, Niego B, Harvey AR, Theotokis P, McLean C, Strittmatter SM, Petratos S. Limiting neuronal nogo receptor 1 signaling during experimental autoimmune encephalomyelitis (EAE) preserves axonal transport and abrogates inflammatory demyelination Journal Of Neuroscience 2019, 39: 1760-18. PMID: 31061088, PMCID: PMC6616297, DOI: 10.1523/jneurosci.1760-18.2019.
- Anti‐PrPC antibody rescues cognition and synapses in transgenic alzheimer miceCox TO, Gunther EC, Brody AH, Chiasseu MT, Stoner A, Smith LM, Haas LT, Hammersley J, Rees G, Dosanjh B, Groves M, Gardener M, Dobson C, Vaughan T, Chessell I, Billinton A, Strittmatter SM. Anti‐PrPC antibody rescues cognition and synapses in transgenic alzheimer mice Annals Of Clinical And Translational Neurology 2019, 6: 554-574. PMID: 30911579, PMCID: PMC6414488, DOI: 10.1002/acn3.730.
- Plexina2 and CRMP2 Signaling Complex Is Activated by Nogo-A-Liganded Ngr1 to Restrict Corticospinal Axon Sprouting after TraumaSekine Y, Algarate PT, Cafferty WBJ, Strittmatter SM. Plexina2 and CRMP2 Signaling Complex Is Activated by Nogo-A-Liganded Ngr1 to Restrict Corticospinal Axon Sprouting after Trauma Journal Of Neuroscience 2019, 39: 3204-3216. PMID: 30804090, PMCID: PMC6788813, DOI: 10.1523/jneurosci.2996-18.2019.
- Systematic and standardized comparison of reported amyloid-β receptors for sufficiency, affinity, and Alzheimer's disease relevanceSmith LM, Kostylev MA, Lee S, Strittmatter SM. Systematic and standardized comparison of reported amyloid-β receptors for sufficiency, affinity, and Alzheimer's disease relevance Journal Of Biological Chemistry 2019, 294: 6042-6053. PMID: 30787106, PMCID: PMC6463724, DOI: 10.1074/jbc.ra118.006252.
- Pyk2 Signaling through Graf1 and RhoA GTPase Is Required for Amyloid-β Oligomer-Triggered Synapse LossLee S, Salazar SV, Cox TO, Strittmatter SM. Pyk2 Signaling through Graf1 and RhoA GTPase Is Required for Amyloid-β Oligomer-Triggered Synapse Loss Journal Of Neuroscience 2019, 39: 1910-1929. PMID: 30626696, PMCID: PMC6407289, DOI: 10.1523/jneurosci.2983-18.2018.
- Rescue of Transgenic Alzheimer’s Pathophysiology by Polymeric Cellular Prion Protein AntagonistsGunther EC, Smith LM, Kostylev MA, Cox TO, Kaufman AC, Lee S, Folta-Stogniew E, Maynard GD, Um JW, Stagi M, Heiss JK, Stoner A, Noble GP, Takahashi H, Haas LT, Schneekloth JS, Merkel J, Teran C, Naderi Z, Supattapone S, Strittmatter SM. Rescue of Transgenic Alzheimer’s Pathophysiology by Polymeric Cellular Prion Protein Antagonists Cell Reports 2019, 26: 145-158.e8. PMID: 30605671, PMCID: PMC6358723, DOI: 10.1016/j.celrep.2018.12.021.
- Rescue of Transgenic Alzheimer’s Pathophysiology by Polymeric Cellular Prion Protein AntagonistsGunther EC, Smith LM, Kostylev MA, Cox TO, Kaufman AC, Lee S, Folta-Stogniew E, Maynard GD, Um JW, Stagi M, Heiss JK, Stoner A, Noble GP, Takahashi H, Haas LT, Schneekloth JS, Merkel J, Teran C, Naderi ZK, Supattapone S, Strittmatter SM. Rescue of Transgenic Alzheimer’s Pathophysiology by Polymeric Cellular Prion Protein Antagonists Cell Reports 2019, 26: 1368. PMID: 30699361, PMCID: PMC6424100, DOI: 10.1016/j.celrep.2019.01.064.
- Alzheimer's Disease Risk Factor Pyk2 Mediates Amyloid-β-Induced Synaptic Dysfunction and LossSalazar SV, Cox TO, Lee S, Brody AH, Chyung AS, Haas LT, Strittmatter SM. Alzheimer's Disease Risk Factor Pyk2 Mediates Amyloid-β-Induced Synaptic Dysfunction and Loss Journal Of Neuroscience 2018, 39: 758-772. PMID: 30518596, PMCID: PMC6343652, DOI: 10.1523/jneurosci.1873-18.2018.
- Liquid and Hydrogel Phases of PrPC Linked to Conformation Shifts and Triggered by Alzheimer’s Amyloid-β OligomersKostylev MA, Tuttle MD, Lee S, Klein LE, Takahashi H, Cox TO, Gunther EC, Zilm KW, Strittmatter SM. Liquid and Hydrogel Phases of PrPC Linked to Conformation Shifts and Triggered by Alzheimer’s Amyloid-β Oligomers Molecular Cell 2018, 72: 426-443.e12. PMID: 30401430, PMCID: PMC6226277, DOI: 10.1016/j.molcel.2018.10.009.
- Diltiazem Promotes Regenerative Axon GrowthHuebner EA, Budel S, Jiang Z, Omura T, Ho TS, Barrett L, Merkel JS, Pereira LM, Andrews NA, Wang X, Singh B, Kapur K, Costigan M, Strittmatter SM, Woolf CJ. Diltiazem Promotes Regenerative Axon Growth Molecular Neurobiology 2018, 56: 3948-3957. PMID: 30232777, PMCID: PMC6424671, DOI: 10.1007/s12035-018-1349-5.
- Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuitDell’Anno M, Wang X, Onorati M, Li M, Talpo F, Sekine Y, Ma S, Liu F, Cafferty WBJ, Sestan N, Strittmatter SM. Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit Nature Communications 2018, 9: 3419. PMID: 30143638, PMCID: PMC6109094, DOI: 10.1038/s41467-018-05844-8.
- Functional Genome-wide Screen Identifies Pathways Restricting Central Nervous System Axonal RegenerationSekine Y, Lin-Moore A, Chenette DM, Wang X, Jiang Z, Cafferty WB, Hammarlund M, Strittmatter SM. Functional Genome-wide Screen Identifies Pathways Restricting Central Nervous System Axonal Regeneration Cell Reports 2018, 24: 269. PMID: 29972787, DOI: 10.1016/j.celrep.2018.06.079.
- P1‐469: PET IMAGING OF METABOTROPIC GLUTAMATE RECEPTOR 5 BINDING IN ALZHEIMER'S DISEASEMecca A, McDonald J, Michalak H, Godek T, Harris J, Chen M, Nabulsi N, Salardini A, Carson R, Strittmatter S, Dyck C. P1‐469: PET IMAGING OF METABOTROPIC GLUTAMATE RECEPTOR 5 BINDING IN ALZHEIMER'S DISEASE Alzheimer's & Dementia 2018, 14: p501-p503. DOI: 10.1016/j.jalz.2018.06.479.
- IC‐04‐03: PET IMAGING OF METABOTROPIC GLUTAMATE RECEPTOR 5 BINDING IN ALZHEIMER'S DISEASEMecca A, McDonald J, Michalak H, Godek T, Harris J, Chen M, Nabulsi N, Salardini A, Carson R, Strittmatter S, Dyck C. IC‐04‐03: PET IMAGING OF METABOTROPIC GLUTAMATE RECEPTOR 5 BINDING IN ALZHEIMER'S DISEASE Alzheimer's & Dementia 2018, 14: p8-p9. DOI: 10.1016/j.jalz.2018.06.2051.
- Whole-Exome Sequencing of an Exceptional Longevity Cohort.Nygaard HB, Erson-Omay EZ, Wu X, Kent BA, Bernales CQ, Evans DM, Farrer MJ, Vilariño-Güell C, Strittmatter SM. Whole-Exome Sequencing of an Exceptional Longevity Cohort. The Journals Of Gerontology Series A 2018, 74: 1386-1390. PMID: 29750252, PMCID: PMC6696723, DOI: 10.1093/gerona/gly098.
- The nociceptin receptor inhibits axonal regeneration and recovery from spinal cord injurySekine Y, Siegel CS, Sekine-Konno T, Cafferty WBJ, Strittmatter SM. The nociceptin receptor inhibits axonal regeneration and recovery from spinal cord injury Science Signaling 2018, 11 PMID: 29615517, PMCID: PMC6179440, DOI: 10.1126/scisignal.aao4180.
- Functional Genome-wide Screen Identifies Pathways Restricting Central Nervous System Axonal RegenerationSekine Y, Lin-Moore A, Chenette DM, Wang X, Jiang Z, Cafferty WB, Hammarlund M, Strittmatter SM. Functional Genome-wide Screen Identifies Pathways Restricting Central Nervous System Axonal Regeneration Cell Reports 2018, 23: 415-428. PMID: 29642001, PMCID: PMC5937716, DOI: 10.1016/j.celrep.2018.03.058.
- Emerging Mechanisms in Alzheimer’s Disease and Their Therapeutic ImplicationsStrittmatter SM. Emerging Mechanisms in Alzheimer’s Disease and Their Therapeutic Implications Biological Psychiatry 2018, 83: 298-299. PMID: 29331211, PMCID: PMC5840867, DOI: 10.1016/j.biopsych.2017.12.002.
- Sleep and EEG Power Spectral Analysis in Three Transgenic Mouse Models of Alzheimer’s Disease: APP/PS1, 3xTgAD, and Tg2576Kent BA, Strittmatter SM, Nygaard H. Sleep and EEG Power Spectral Analysis in Three Transgenic Mouse Models of Alzheimer’s Disease: APP/PS1, 3xTgAD, and Tg2576 Journal Of Alzheimer's Disease 2018, Preprint: 1-12. PMID: 29991134, PMCID: PMC6176720, DOI: 10.3233/jad-180260.
- Disease-modifying benefit of Fyn blockade persists after washout in mouse Alzheimer's modelSmith LM, Zhu R, Strittmatter SM. Disease-modifying benefit of Fyn blockade persists after washout in mouse Alzheimer's model Neuropharmacology 2017, 130: 54-61. PMID: 29191754, PMCID: PMC5743608, DOI: 10.1016/j.neuropharm.2017.11.042.
- Conditional Deletion of Prnp Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic Alzheimer's DiseaseSalazar SV, Gallardo C, Kaufman AC, Herber CS, Haas LT, Robinson S, Manson JC, Lee MK, Strittmatter SM. Conditional Deletion of Prnp Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic Alzheimer's Disease Journal Of Neuroscience 2017, 37: 9207-9221. PMID: 28842420, PMCID: PMC5607466, DOI: 10.1523/jneurosci.0722-17.2017.
- Silent Allosteric Modulation of mGluR5 Maintains Glutamate Signaling while Rescuing Alzheimer’s Mouse PhenotypesHaas LT, Salazar SV, Smith LM, Zhao HR, Cox TO, Herber CS, Degnan AP, Balakrishnan A, Macor JE, Albright CF, Strittmatter SM. Silent Allosteric Modulation of mGluR5 Maintains Glutamate Signaling while Rescuing Alzheimer’s Mouse Phenotypes Cell Reports 2017, 20: 76-88. PMID: 28683325, PMCID: PMC5547898, DOI: 10.1016/j.celrep.2017.06.023.
- Loss of TMEM106B Ameliorates Lysosomal and Frontotemporal Dementia-Related Phenotypes in Progranulin-Deficient MiceKlein ZA, Takahashi H, Ma M, Stagi M, Zhou M, Lam TT, Strittmatter SM. Loss of TMEM106B Ameliorates Lysosomal and Frontotemporal Dementia-Related Phenotypes in Progranulin-Deficient Mice Neuron 2017, 95: 281-296.e6. PMID: 28728022, PMCID: PMC5558861, DOI: 10.1016/j.neuron.2017.06.026.
- Chapter 8 Targeting Aβ Receptors to Modify Alzheimer’s Disease ProgressionHaas L, Strittmatter S. Chapter 8 Targeting Aβ Receptors to Modify Alzheimer’s Disease Progression 2016, 227-250. DOI: 10.1016/b978-0-12-802173-6.00008-3.
- Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s diseaseHaas LT, Salazar SV, Kostylev MA, Um JW, Kaufman AC, Strittmatter SM. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease Brain 2015, 139: 526-546. PMID: 26667279, PMCID: PMC4840505, DOI: 10.1093/brain/awv356.
- Erasure of fear memories is prevented by Nogo Receptor 1 in adulthoodBhagat SM, Butler SS, Taylor JR, McEwen BS, Strittmatter SM. Erasure of fear memories is prevented by Nogo Receptor 1 in adulthood Molecular Psychiatry 2015, 21: 1281-1289. PMID: 26619810, PMCID: PMC4887429, DOI: 10.1038/mp.2015.179.
- F5‐02‐02: Aß oligomer induced signal transduction at the post‐synaptic densityKaufman A, Kostylev M, Haas L, Salazar S, Strittmatter S. F5‐02‐02: Aß oligomer induced signal transduction at the post‐synaptic density Alzheimer's & Dementia 2015, 11: p305-p305. DOI: 10.1016/j.jalz.2015.07.428.
- Fyn inhibition rescues established memory and synapse loss in Alzheimer miceKaufman AC, Salazar SV, Haas LT, Yang J, Kostylev MA, Jeng AT, Robinson SA, Gunther EC, van Dyck CH, Nygaard HB, Strittmatter SM. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice Annals Of Neurology 2015, 77: 953-971. PMID: 25707991, PMCID: PMC4447598, DOI: 10.1002/ana.24394.
- Anatomical Plasticity of Adult Brain Is Titrated by Nogo Receptor 1Akbik F, Bhagat S, Patel P, Cafferty W, Strittmatter S. Anatomical Plasticity of Adult Brain Is Titrated by Nogo Receptor 1 Neuron 2014, 82: 1184-1185. DOI: 10.1016/j.neuron.2014.05.022.
- A Synaptotoxic Pathway from Aβ oligomer to Prion Protein to mGluR5 to F kinase in Alzheimer's DiseaseStrittmatter S, Kostylev M, Kaufman A, Haas L, Heiss J, Gunther E, Nygaard H. A Synaptotoxic Pathway from Aβ oligomer to Prion Protein to mGluR5 to F kinase in Alzheimer's Disease Neurobiology Of Aging 2014, 35: s21. DOI: 10.1016/j.neurobiolaging.2014.01.112.
- Metabotropic Glutamate Receptor 5 Is a Coreceptor for Alzheimer Aβ Oligomer Bound to Cellular Prion ProteinUm J, Kaufman A, Kostylev M, Heiss J, Stagi M, Takahashi H, Kerrisk M, Vortmeyer A, Wisniewski T, Koleske A, Gunther E, Nygaard H, Strittmatter S. Metabotropic Glutamate Receptor 5 Is a Coreceptor for Alzheimer Aβ Oligomer Bound to Cellular Prion Protein Neuron 2013, 80: 531. DOI: 10.1016/j.neuron.2013.10.001.
- Metabotropic Glutamate Receptor 5 Is a Coreceptor for Alzheimer Aβ Oligomer Bound to Cellular Prion ProteinUm JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, Kerrisk ME, Vortmeyer A, Wisniewski T, Koleske AJ, Gunther EC, Nygaard HB, Strittmatter SM. Metabotropic Glutamate Receptor 5 Is a Coreceptor for Alzheimer Aβ Oligomer Bound to Cellular Prion Protein Neuron 2013, 79: 887-902. PMID: 24012003, PMCID: PMC3768018, DOI: 10.1016/j.neuron.2013.06.036.
- 167 Diffusion Tensor Imaging as a Predictor of Experimental Spinal Cord Injury Severity and RecoveryKelley B, Harel N, Kim C, Wang X, Hasan O, Kauffman A, Globinsky R, Staib L, Papademetris X, Strittmatter S. 167 Diffusion Tensor Imaging as a Predictor of Experimental Spinal Cord Injury Severity and Recovery Neurosurgery 2013, 60: 175-176. DOI: 10.1227/01.neu.0000432759.85289.43.
- Anatomical Plasticity of Adult Brain Is Titrated by Nogo Receptor 1Akbik FV, Bhagat SM, Patel PR, Cafferty WB, Strittmatter SM. Anatomical Plasticity of Adult Brain Is Titrated by Nogo Receptor 1 Neuron 2013, 77: 859-866. PMID: 23473316, PMCID: PMC3594793, DOI: 10.1016/j.neuron.2012.12.027.
- Role of Cellular Prion Protein in the Amyloid-β Oligomer Pathophysiology of Alzheimer’s DiseaseKaufman A, Strittmatter S. Role of Cellular Prion Protein in the Amyloid-β Oligomer Pathophysiology of Alzheimer’s Disease 2012, 35-48. DOI: 10.1007/978-1-4614-5305-5_3.
- Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neuronsUm JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A, Wisniewski T, Gunther EC, Strittmatter SM. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons Nature Neuroscience 2012, 15: 1227-1235. PMID: 22820466, PMCID: PMC3431439, DOI: 10.1038/nn.3178.
- P1‐275: Epileptiform discharges in transgenic Alzheimer's mice correlate with impairments in spatial memory and are reduced by ethosuximideNygaard H, Kaufman A, Huh L, Strittmatter S. P1‐275: Epileptiform discharges in transgenic Alzheimer's mice correlate with impairments in spatial memory and are reduced by ethosuximide Alzheimer's & Dementia 2012, 8: p202-p202. DOI: 10.1016/j.jalz.2012.05.555.
- A Hebbian Approach to Retraining Spared Circuits after Spinal Cord Injury (P02.005)Harel N, Song K, Tang X, Spungen A, Strittmatter S. A Hebbian Approach to Retraining Spared Circuits after Spinal Cord Injury (P02.005) Neurology 2012, 78: p02.005-p02.005. DOI: 10.1212/wnl.78.1_meetingabstracts.p02.005.
- Recovery from chronic spinal cord contusion after nogo receptor interventionWang X, Duffy P, McGee AW, Hasan O, Gould G, Tu N, Harel NY, Huang Y, Carson RE, Weinzimmer D, Ropchan J, Benowitz LI, Cafferty WB, Strittmatter SM. Recovery from chronic spinal cord contusion after nogo receptor intervention Annals Of Neurology 2011, 70: 805-821. PMID: 22162062, PMCID: PMC3238798, DOI: 10.1002/ana.22527.
- Sortilin-Mediated Endocytosis Determines Levels of the Frontotemporal Dementia Protein, ProgranulinHu F, Padukkavidana T, Vægter CB, Brady OA, Zheng Y, Mackenzie IR, Feldman HH, Nykjaer A, Strittmatter SM. Sortilin-Mediated Endocytosis Determines Levels of the Frontotemporal Dementia Protein, Progranulin Neuron 2010, 68: 654-667. PMID: 21092856, PMCID: PMC2990962, DOI: 10.1016/j.neuron.2010.09.034.
- Segmentation of Rat Spinal Cord in PET Using Spatiotemporal InformationFung E, Weinzimmer D, Strittmatter S, Huang Y, Carson R. Segmentation of Rat Spinal Cord in PET Using Spatiotemporal Information 2010, 3605-3609. DOI: 10.1109/nssmic.2010.5874483.
- Laurén et al. replyLaurén J, Gimbel D, Nygaard H, Gilbert J, Strittmatter S. Laurén et al. reply Nature 2010, 466: e4-e5. DOI: 10.1038/nature09218.
- P3‐461: Anti‐PrPC monoclonal antibody infusion as a novel treatment for Aß oligomer cognitive deficitsWisniewski T, Chung E, Ji Y, Sun Y, Kascsak R, Kascsak R, Strittmatter S. P3‐461: Anti‐PrPC monoclonal antibody infusion as a novel treatment for Aß oligomer cognitive deficits Alzheimer's & Dementia 2010, 6: s589-s589. DOI: 10.1016/j.jalz.2010.05.2004.
- Memory Impairment in Transgenic Alzheimer Mice Requires Cellular Prion ProteinGimbel DA, Nygaard HB, Coffey EE, Gunther EC, Laurén J, Gimbel ZA, Strittmatter SM. Memory Impairment in Transgenic Alzheimer Mice Requires Cellular Prion Protein Journal Of Neuroscience 2010, 30: 6367-6374. PMID: 20445063, PMCID: PMC3323924, DOI: 10.1523/jneurosci.0395-10.2010.
- Protein Tyrosine Phosphatase δ dephospholyrates c-Src in Sema3A signalingNakamura F, Strittmatter S, Goshima Y. Protein Tyrosine Phosphatase δ dephospholyrates c-Src in Sema3A signaling Neuroscience Research 2010, 68: e136. DOI: 10.1016/j.neures.2010.07.2176.
- Chapter 240 Semaphorins and their Receptors in Vertebrates and InvertebratesSchmidt E, Togashi H, Strittmatter S. Chapter 240 Semaphorins and their Receptors in Vertebrates and Invertebrates 2010, 1961-1966. DOI: 10.1016/b978-0-12-374145-5.00240-0.
- S3‐02‐06: Neuronal receptors mediating toxicity of Abeta oligomersStrittmatter S. S3‐02‐06: Neuronal receptors mediating toxicity of Abeta oligomers Alzheimer's & Dementia 2009, 5: p121-p121. DOI: 10.1016/j.jalz.2009.05.386.
- Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomersLaurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers Nature 2009, 457: 1128-1132. PMID: 19242475, PMCID: PMC2748841, DOI: 10.1038/nature07761.
- PET Imaging of serotonin transporter as a biomarker for axon damage and regeneration in spinal cord injuryHuang Y, Nabulsi N, Weinzimmer D, Fung E, Ropchan J, Labaree D, Wang X, Gould G, Frost J, Carson R, Strittmatter S. PET Imaging of serotonin transporter as a biomarker for axon damage and regeneration in spinal cord injury NeuroImage 2008, 41: t154. DOI: 10.1016/j.neuroimage.2008.04.122.
- LRRTM1 protein is located in the endoplasmic reticulum (ER) in mammalian cellsFrancks C, Maegawa S, Laurén J, Abrahams B, Velayos-Baeza A, Medland S, Colella S, Groszer M, McAuley E, Caffrey T, Timmusk T, Pruunsild P, Koppel I, Lind P, Matsumoto-Itaba N, Nicod J, Xiong L, Joober R, Enard W, Krinsky B, Nanba E, Richardson A, Riley B, Martin N, Strittmatter S, Möller H, Rujescu D, St Clair D, Muglia P, Roos J, Fisher S, Wade-Martins R, Rouleau G, Stein J, Karayiorgou M, Geschwind D, Ragoussis J, Kendler K, Airaksinen M, Oshimura M, DeLisi L, Monaco A. LRRTM1 protein is located in the endoplasmic reticulum (ER) in mammalian cells Molecular Psychiatry 2007, 12: 1057-1057. DOI: 10.1038/sj.mp.4002116.
- Contributor's ListBerkovic S, Bilguvar K, Blackstone C, Bloch M, Blumenfeld H, Bredesen D, Bressman S, Brucal M, Burton E, Dalmau J, Dawson T, Dawson V, Depondt C, DiLuna M, DiMauro S, Ferrari M, Fink D, Flügel A, Frants R, Glorioso J, Goadsby P, Goldin A, Gunel M, Harel N, Helbig I, Hemmen T, Hisama F, Hyman B, Ingelsson M, Johnson D, Kamholz J, Kaul M, Kocsis J, Lammers G, Leckman J, Li J, Lipton S, Maragakis N, Mehlen P, Morimoto R, Orton K, Overeem S, Ozelius L, Pandolfo M, Pascual J, Paulson H, Peroutka S, Petroff O, Ransom C, Rao R, Rismanchi N, Rothstein J, Savitt J, Scheffer I, Schon E, Shy M, Strittmatter S, Tafti M, Tanriover G, Todi S, van den Maagdenberg A, Vance J, Vincent A, Voisine C, Waxman S, Wekerle H, Williams A, Wood J, Yang Y, Zivin J. Contributor's List 2007, vii-ix. DOI: 10.1016/b978-012369509-3.50001-9.
- 14 The Dawn of Molecular and Cellular Therapies for Traumatic Spinal Cord InjuryHarel N, Yang Y, Strittmatter S, Kocsis J, Waxman S. 14 The Dawn of Molecular and Cellular Therapies for Traumatic Spinal Cord Injury 2007, 207-220. DOI: 10.1016/b978-012369509-3.50016-0.
- Analysis of entorhino-hippocampal projection in PTPδ mutant miceNakamura F, Goshima Y, Uetani N, Iwakura Y, Strittmatter S. Analysis of entorhino-hippocampal projection in PTPδ mutant mice Neuroscience Research 2007, 58: s39. DOI: 10.1016/j.neures.2007.06.225.
- Delayed Nogo receptor therapy improves recovery from spinal cord contusionWang X, Baughman KW, Basso DM, Strittmatter SM. Delayed Nogo receptor therapy improves recovery from spinal cord contusion Annals Of Neurology 2006, 60: 540-549. PMID: 16958113, PMCID: PMC2855693, DOI: 10.1002/ana.20953.
- CNS Axon Regeneration and NogoStrittmatter S. CNS Axon Regeneration and Nogo CNS Neuroscience & Therapeutics 2006, 6: 32-32. DOI: 10.1111/j.1527-3458.2000.tb00176.x.
- Axonal Regeneration and Recovery From Chronic Central Nervous System InjuryStrittmatter S. Axonal Regeneration and Recovery From Chronic Central Nervous System Injury 2006, 1165-1172. DOI: 10.1007/978-1-59259-963-9_122.
- Experience-Driven Plasticity of Visual Cortex Limited by Myelin and Nogo ReceptorMcGee AW, Yang Y, Fischer QS, Daw NW, Strittmatter SM. Experience-Driven Plasticity of Visual Cortex Limited by Myelin and Nogo Receptor Science 2005, 309: 2222-2226. PMID: 16195464, PMCID: PMC2856689, DOI: 10.1126/science.1114362.
- Chapter 26 Promoting the Regeneration of Axons within the Central Nervous SystemPark J, Strittmatter S. Chapter 26 Promoting the Regeneration of Axons within the Central Nervous System 2005, 433-xviii. DOI: 10.1016/b978-012738903-5/50027-8.
- Blockade of Nogo-66, Myelin-Associated Glycoprotein, and Oligodendrocyte Myelin Glycoprotein by Soluble Nogo-66 Receptor Promotes Axonal Sprouting and Recovery after Spinal InjuryLi S, Liu BP, Budel S, Li M, Ji B, Walus L, Li W, Jirik A, Rabacchi S, Choi E, Worley D, Sah DW, Pepinsky B, Lee D, Relton J, Strittmatter SM. Blockade of Nogo-66, Myelin-Associated Glycoprotein, and Oligodendrocyte Myelin Glycoprotein by Soluble Nogo-66 Receptor Promotes Axonal Sprouting and Recovery after Spinal Injury Journal Of Neuroscience 2004, 24: 10511-10520. PMID: 15548666, PMCID: PMC6730300, DOI: 10.1523/jneurosci.2828-04.2004.
- Nogo-66 Receptor Prevents Raphespinal and Rubrospinal Axon Regeneration and Limits Functional Recovery from Spinal Cord InjuryKim JE, Liu BP, Park JH, Strittmatter SM. Nogo-66 Receptor Prevents Raphespinal and Rubrospinal Axon Regeneration and Limits Functional Recovery from Spinal Cord Injury Neuron 2004, 44: 439-451. PMID: 15504325, DOI: 10.1016/j.neuron.2004.10.015.
- Axon Regeneration in Young Adult Mice Lacking Nogo-A/BKim J, Li S, GrandPré T, Qiu D, Strittmatter SM. Axon Regeneration in Young Adult Mice Lacking Nogo-A/B Neuron 2003, 38: 187-199. PMID: 12718854, DOI: 10.1016/s0896-6273(03)00147-8.
- Chapter 267 Semaphorins and their Receptors in Vertebrates and InvertebratesSchmidt E, Togashi H, Strittmatter S. Chapter 267 Semaphorins and their Receptors in Vertebrates and Invertebrates 2003, 877-881. DOI: 10.1016/b978-012124546-7/50628-8.
- Myelin-Associated Glycoprotein as a Functional Ligand for the Nogo-66 ReceptorLiu BP, Fournier A, GrandPré T, Strittmatter SM. Myelin-Associated Glycoprotein as a Functional Ligand for the Nogo-66 Receptor Science 2002, 297: 1190-1193. PMID: 12089450, DOI: 10.1126/science.1073031.
- Nogo-66 receptor antagonist peptide promotes axonal regenerationGrandPré T, Li S, Strittmatter SM. Nogo-66 receptor antagonist peptide promotes axonal regeneration Nature 2002, 417: 547-551. PMID: 12037567, DOI: 10.1038/417547a.
- Semaphorin-mediated axonal guidance via Rho-related G proteinsLiu B, Strittmatter S. Semaphorin-mediated axonal guidance via Rho-related G proteins Current Opinion In Cell Biology 2001, 13: 619-626. PMID: 11544032, DOI: 10.1016/s0955-0674(00)00260-x.
- Nogo: A Molecular Determinant of Axonal Growth and RegenerationGrandpré T, Strittmatter S. Nogo: A Molecular Determinant of Axonal Growth and Regeneration The Neuroscientist 2001, 7: 377-386. PMID: 11597097, DOI: 10.1177/107385840100700507.
- Repulsive factors and axon regeneration in the CNSFournier A, Strittmatter S. Repulsive factors and axon regeneration in the CNS Current Opinion In Neurobiology 2001, 11: 89-94. PMID: 11179877, DOI: 10.1016/s0959-4388(00)00178-1.
- PlexinA1 Autoinhibition by the Plexin Sema DomainTakahashi T, Strittmatter S. PlexinA1 Autoinhibition by the Plexin Sema Domain Neuron 2001, 29: 429-439. PMID: 11239433, DOI: 10.1016/s0896-6273(01)00216-1.
- Identification of a receptor mediating Nogo-66 inhibition of axonal regenerationFournier A, GrandPre T, Strittmatter S. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration Nature 2001, 409: 341-346. PMID: 11201742, DOI: 10.1038/35053072.
- Molecular basis of semaphorin‐mediated axon guidanceNakamura F, Kalb R, Strittmatter S. Molecular basis of semaphorin‐mediated axon guidance Developmental Neurobiology 2000, 44: 219-229. PMID: 10934324, DOI: 10.1002/1097-4695(200008)44:2<219::aid-neu11>3.0.co;2-w.
- Semaphorin3a Enhances Endocytosis at Sites of Receptor–F-Actin Colocalization during Growth Cone CollapseFournier A, Nakamura F, Kawamoto S, Goshima Y, Kalb R, Strittmatter S. Semaphorin3a Enhances Endocytosis at Sites of Receptor–F-Actin Colocalization during Growth Cone Collapse Journal Of Cell Biology 2000, 149: 411-422. PMID: 10769032, PMCID: PMC2175148, DOI: 10.1083/jcb.149.2.411.
- Dendrites go up, axons go downStrittmatter S. Dendrites go up, axons go down Nature 2000, 404: 557-559. PMID: 10766224, DOI: 10.1038/35007181.
- Brain‐Derived Neurotrophic Factor Induces Excitotoxic Sensitivity in Cultured Embryonic Rat Spinal Motor Neurons Through Activation of the Phosphatidylinositol 3‐Kinase PathwayFryer H, Wolf D, Knox R, Strittmatter S, Pennica D, O'Leary R, Russell D, Kalb R. Brain‐Derived Neurotrophic Factor Induces Excitotoxic Sensitivity in Cultured Embryonic Rat Spinal Motor Neurons Through Activation of the Phosphatidylinositol 3‐Kinase Pathway Journal Of Neurochemistry 2000, 74: 582-595. PMID: 10646509, DOI: 10.1046/j.1471-4159.2000.740582.x.
- Identification of the Nogo inhibitor of axon regeneration as a Reticulon proteinGrandPré T, Nakamura F, Vartanian T, Strittmatter S. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein Nature 2000, 403: 439-444. PMID: 10667797, DOI: 10.1038/35000226.
- Transduction of Inhibitory Signals by the Axonal Growth ConeWang L, Fournier A, Nakamura F, Takahashi T, Kalb R, Strittmatter S. Transduction of Inhibitory Signals by the Axonal Growth Cone 2000, 131-153. DOI: 10.1007/978-1-59259-200-5_6.
- Go protein-dependent survival of primary accessory olfactory neuronsTanaka M, Treloar H, Kalb R, Greer C, Strittmatter S. Go protein-dependent survival of primary accessory olfactory neurons Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 14106-14111. PMID: 10570206, PMCID: PMC24198, DOI: 10.1073/pnas.96.24.14106.
- Plexin-Neuropilin-1 Complexes Form Functional Semaphorin-3A ReceptorsTakahashi T, Fournier A, Nakamura F, Wang L, Murakami Y, Kalb R, Fujisawa H, Strittmatter S. Plexin-Neuropilin-1 Complexes Form Functional Semaphorin-3A Receptors Cell 1999, 99: 59-69. PMID: 10520994, DOI: 10.1016/s0092-8674(00)80062-8.
- Sequence‐specific cleavage of Huntingtin mRNA by catalytic DNAYen L, Strittmatter S, Kalb R. Sequence‐specific cleavage of Huntingtin mRNA by catalytic DNA Annals Of Neurology 1999, 46: 366-373. PMID: 10482267, DOI: 10.1002/1531-8249(199909)46:3<366::aid-ana12>3.0.co;2-d.
- Growth cone neuropilin‐1 mediates collapsin‐1/sema III facilitation of antero‐ and retrograde axoplasmic transportGoshima Y, Hori H, Sasaki Y, Yang T, Maezono M, Li C, Takenaka T, Nakamura F, Takahashi T, Strittmatter S, Misu Y, Kawakami T. Growth cone neuropilin‐1 mediates collapsin‐1/sema III facilitation of antero‐ and retrograde axoplasmic transport Developmental Neurobiology 1999, 39: 579-589. PMID: 10380079, DOI: 10.1002/(sici)1097-4695(19990615)39:4<579::aid-neu11>3.0.co;2-9.
- A PDZ Protein Regulates the Distribution of the Transmembrane Semaphorin, M-SemF*Wang L, Kalb R, Strittmatter S. A PDZ Protein Regulates the Distribution of the Transmembrane Semaphorin, M-SemF* Journal Of Biological Chemistry 1999, 274: 14137-14146. PMID: 10318831, DOI: 10.1074/jbc.274.20.14137.
- Isolation of Receptor Clones by Expression Screening in Xenopus OocytesNakamura F, Goshima Y, Strittmatter S, Kawamoto S. Isolation of Receptor Clones by Expression Screening in Xenopus Oocytes 1999, 128: 1-18. DOI: 10.1385/1-59259-683-5:1.
- AbstractsOSAMURA R, KOJIMA K, Ooi A, Tani Y, TAKAMI H, Suzuki T, Takata K, Akimoto Y, Hirano H, NAKAYAMA J, KATSUYAMA T, FUKUDA M, KUBUSHIRO K, YAMASHITA H, TSUKAZAKI K, NOZAWA S, FURUKAWA K, Ishihara T, Hoshii Y, TSUTSUMI Y, SUSUMU N, TSUDA H, AOKI D, KOMIYAMA S, UDAGAWA Y, HIROHASHI S, IWAI M, MURAMATSU A, KASHIMA K, Matsushita H, Takeuchi Y, OTSUKI Y, Miura M, TAKIGAWA T, SHIOTA K, NAGASHIMA K, UCHIYAMA Y, SHIMADA S, UGAWA S, Tanaka M, Strittmatter S, AIMI Y, TOOYAMA I, YASUHARA O, KIMURA H, Shirai Y, Saito N, Kaneko T, Furuta T, YOSHIDA T, IMANAKA-YOSHIDA K, Ohtani H, UMEKITA Y, Takeshima Y, Inai K. Abstracts Acta Histochemica Et Cytochemica 1999, 32: 502. DOI: 10.1267/ahc.32.502.
- The Role of Nitric Oxide and NMDA Receptors in the Development of Motor Neuron DendritesInglis F, Furia F, Zuckerman K, Strittmatter S, Kalb R. The Role of Nitric Oxide and NMDA Receptors in the Development of Motor Neuron Dendrites Journal Of Neuroscience 1998, 18: 10493-10501. PMID: 9852587, PMCID: PMC6793344, DOI: 10.1523/jneurosci.18-24-10493.1998.
- Neuropilin-1 Extracellular Domains Mediate Semaphorin D/III-Induced Growth Cone CollapseNakamura F, Tanaka M, Takahashi T, Kalb R, Strittmatter S. Neuropilin-1 Extracellular Domains Mediate Semaphorin D/III-Induced Growth Cone Collapse Neuron 1998, 21: 1093-1100. PMID: 9856464, DOI: 10.1016/s0896-6273(00)80626-1.
- Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptorsTakahashi T, Nakamura F, Jin Z, Kalb R, Strittmatter S. Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptors Nature Neuroscience 1998, 1: 487-493. PMID: 10196546, DOI: 10.1038/2203.
- GAP‐43 Augmentation of G Protein‐Mediated Signal Transduction Is Regulated by Both Phosphorylation and PalmitoylationNakamura F, Strittmatter P, Strittmatter S. GAP‐43 Augmentation of G Protein‐Mediated Signal Transduction Is Regulated by Both Phosphorylation and Palmitoylation Journal Of Neurochemistry 1998, 70: 983-992. PMID: 9489717, DOI: 10.1046/j.1471-4159.1998.70030983.x.
- Neuronal and Non-Neuronal Collapsin-1 Binding Sites in Developing Chick Are Distinct from Other Semaphorin Binding SitesTakahashi T, Nakamura F, Strittmatter S. Neuronal and Non-Neuronal Collapsin-1 Binding Sites in Developing Chick Are Distinct from Other Semaphorin Binding Sites Journal Of Neuroscience 1997, 17: 9183-9193. PMID: 9364065, PMCID: PMC6573609, DOI: 10.1523/jneurosci.17-23-09183.1997.
- Brain CRMP Forms Heterotetramers Similar to Liver DihydropyrimidinaseWang L, Strittmatter S. Brain CRMP Forms Heterotetramers Similar to Liver Dihydropyrimidinase Journal Of Neurochemistry 1997, 69: 2261-2269. PMID: 9375656, DOI: 10.1046/j.1471-4159.1997.69062261.x.
- A novel action of collapsin: Collapsin‐1 increases antero‐ and retrograde axoplasmic transport independently of growth cone collapseGoshima Y, Kawakami T, Hori H, Sugiyama Y, Takasawa S, Hashimoto Y, Kagoshima‐Maezono M, Takenaka T, Misu Y, Strittmatter S. A novel action of collapsin: Collapsin‐1 increases antero‐ and retrograde axoplasmic transport independently of growth cone collapse Developmental Neurobiology 1997, 33: 316-328. PMID: 9298768, DOI: 10.1002/(sici)1097-4695(199709)33:3<316::aid-neu9>3.0.co;2-4.
- Signal Transduction at the Neuronal Growth ConeStrittmatter S. Signal Transduction at the Neuronal Growth Cone The Neuroscientist 1996, 2: 83-86. DOI: 10.1177/107385849600200208.
- 709 Facilitatory effect of collapsin on axoplasmic transport in mouse DRG neuronsGoshima Y, Kawakami T, Takenaka T, Misu Y, Strittmatter S. 709 Facilitatory effect of collapsin on axoplasmic transport in mouse DRG neurons Neuroscience Research 1996, 25: s82. DOI: 10.1016/0168-0102(96)88781-5.
- Neuronal Guidance Molecules: Inhibitory and Soluble FactorsStrittmatter S. Neuronal Guidance Molecules: Inhibitory and Soluble Factors The Neuroscientist 1995, 1: 255-258. DOI: 10.1177/107385849500100502.
- Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33Goshima Y, Nakamura F, Strittmatter P, Strittmatter S. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33 Nature 1995, 376: 509-514. PMID: 7637782, DOI: 10.1038/376509a0.
- An activated mutant of the a subunit of Go increases neurite outgrowth via protein kinase CXie R, Li L, Goshima Y, Strittmatter S. An activated mutant of the a subunit of Go increases neurite outgrowth via protein kinase C Brain Research 1995, 87: 77-86. PMID: 7554235, DOI: 10.1016/0165-3806(95)00061-h.
- Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43Strittmatter S, Fankhauser C, Huang P, Mashimo H, Fishman M. Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43 Cell 1995, 80: 445-452. PMID: 7859286, DOI: 10.1016/0092-8674(95)90495-6.
- GAP-43 amino terminal peptides modulate growth cone morphology and neurite outgrowthStrittmatter S, Igarashi M, Fishman M. GAP-43 amino terminal peptides modulate growth cone morphology and neurite outgrowth Journal Of Neuroscience 1994, 14: 5503-5513. PMID: 8083750, PMCID: PMC6577098, DOI: 10.1523/jneurosci.14-09-05503.1994.
- Activated mutants of the alpha subunit of G(o) promote an increased number of neurites per cellStrittmatter S, Fishman M, Zhu X. Activated mutants of the alpha subunit of G(o) promote an increased number of neurites per cell Journal Of Neuroscience 1994, 14: 2327-2338. PMID: 8158271, PMCID: PMC6577129, DOI: 10.1523/jneurosci.14-04-02327.1994.
- Functional expression of sodium channel mutations identified in families with periodic paralysisCannon S, Strittmatter S. Functional expression of sodium channel mutations identified in families with periodic paralysis Neuron 1993, 10: 317-326. PMID: 8382500, DOI: 10.1016/0896-6273(93)90321-h.
- Mediation by G Proteins of Signals That Cause Collapse of Growth ConesIgarashi M, Strittmatter S, Vartanian T, Fishman M. Mediation by G Proteins of Signals That Cause Collapse of Growth Cones Science 1993, 259: 77-79. PMID: 8418498, DOI: 10.1126/science.8418498.
- GAP‐43 as a plasticity protein in neuronal form and repairStrittmatter S, Vartanian T, Fishman M. GAP‐43 as a plasticity protein in neuronal form and repair Developmental Neurobiology 1992, 23: 507-520. PMID: 1431834, DOI: 10.1002/neu.480230506.
- The neuronal growth cone as a specialized transduction systemStrittmatter S, Fishman M. The neuronal growth cone as a specialized transduction system BioEssays 1991, 13: 127-134. PMID: 1831353, DOI: 10.1002/bies.950130306.
- Growth cone transduction: Go and GAP-43STRITTMATTER S, VALENZUELA D, VARTANIAN T, SUDO Y, ZUBER M, FISHMAN M. Growth cone transduction: Go and GAP-43 Journal Of Cell Science. Supplement 1991, 1991: 27-33. PMID: 1840457, DOI: 10.1242/jcs.1991.supplement_15.5.
- G0 is a major growth cone protein subject to regulation by GAP-43Strittmatter S, Valenzuela D, Kennedy T, Neer E, Fishman M. G0 is a major growth cone protein subject to regulation by GAP-43 Nature 1990, 344: 836-841. PMID: 2158629, DOI: 10.1038/344836a0.
- A membrane-targeting signal in the amino terminus of the neuronal protein GAP-43Zuber M, Strittmatter S, Fishman M. A membrane-targeting signal in the amino terminus of the neuronal protein GAP-43 Nature 1989, 341: 345-348. PMID: 2797153, DOI: 10.1038/341345a0.
- Characterization of a neutral, divalent cation-sensitive endopeptidase: a possible role in neuropeptide processingSupattapone S, Strittmatter S, Fricker L, Snyder S. Characterization of a neutral, divalent cation-sensitive endopeptidase: a possible role in neuropeptide processing Brain Research 1988, 3: 173-181. DOI: 10.1016/0169-328x(88)90063-0.
- Enkephalin convertase: characterization and localization using [3H]guanidinoethylmercaptosuccinic acidLynch D, Venable J, Strittmatter S, Snyder S. Enkephalin convertase: characterization and localization using [3H]guanidinoethylmercaptosuccinic acid Biochimie 1988, 70: 57-64. PMID: 3135843, DOI: 10.1016/0300-9084(88)90158-7.
- Enkephalin convertase in the gastrointestinal tract an associated organs characterized and localized with [3H]guanidinoethylmercaptosuccinic acid.LYNCH D, STRITTMATTER S, VENABLE J, SNYDER S. Enkephalin convertase in the gastrointestinal tract an associated organs characterized and localized with [3H]guanidinoethylmercaptosuccinic acid. Endocrinology 1987, 121: 116-26. PMID: 3109877, DOI: 10.1210/endo-121-1-116.
- Differential ontogeny of rat brain peptidases: Prenatal expression of enkephalin convertase and postnatal development of angiotensin-converting enzymeStrittmatter S, Lynch D, Snyder S. Differential ontogeny of rat brain peptidases: Prenatal expression of enkephalin convertase and postnatal development of angiotensin-converting enzyme Brain Research 1986, 29: 207-215. DOI: 10.1016/0165-3806(86)90096-9.
- Angiotensin-converting enzyme localized in the rat pituitary and adrenal glands by [3H]captopril autoradiography.STRITTMATTER S, DE SOUZA E, LYNCH D, SNYDER S. Angiotensin-converting enzyme localized in the rat pituitary and adrenal glands by [3H]captopril autoradiography. Endocrinology 1986, 118: 1690-9. PMID: 3004925, DOI: 10.1210/endo-118-4-1690.
- Angiotensin-converting enzyme in the testis and epididymis: differential development and pituitary regulation of isozymes.STRITTMATTER S, THIELE E, DE SOUZA E, SNYDER S. Angiotensin-converting enzyme in the testis and epididymis: differential development and pituitary regulation of isozymes. Endocrinology 1985, 117: 1374-9. PMID: 2992911, DOI: 10.1210/endo-117-4-1374.
- Enkephalin convertase demonstrated in the pituitary and adrenal gland by [3H]guanidinoethylmercaptosuccinic acid autoradiography: dehydration decreases neurohypophyseal levels.STRITTMATTER S, LYNCH D, SOUZA E, SNYDER S. Enkephalin convertase demonstrated in the pituitary and adrenal gland by [3H]guanidinoethylmercaptosuccinic acid autoradiography: dehydration decreases neurohypophyseal levels. Endocrinology 1985, 117: 1667-74. PMID: 3928337, DOI: 10.1210/endo-117-4-1667.
- Substance K and substance P as possible endogenous substrates of angiotensin converting enzyme in the brainThiele E, Strittmatter S, Snyder S. Substance K and substance P as possible endogenous substrates of angiotensin converting enzyme in the brain Biochemical And Biophysical Research Communications 1985, 128: 317-324. PMID: 2580530, DOI: 10.1016/0006-291x(85)91681-x.
- Angiotensin-converting enzyme in the male rat reproductive system: autoradiographic visualization with [3H]captopril.STRITTMATTER S, SNYDER S. Angiotensin-converting enzyme in the male rat reproductive system: autoradiographic visualization with [3H]captopril. Endocrinology 1984, 115: 2332-41. PMID: 6094156, DOI: 10.1210/endo-115-6-2332.
- Monoclonal antibody production by receptor-mediated electrically induced cell fusionLo M, Tsong T, Conrad M, Strittmatter S, Hester L, Snyder S. Monoclonal antibody production by receptor-mediated electrically induced cell fusion Nature 1984, 310: 792-794. PMID: 6088990, DOI: 10.1038/310792a0.
- A fluorometric assay for angiotensin-converting enzyme activityKapiloff M, Strittmatter S, Fricker L, Snyder S. A fluorometric assay for angiotensin-converting enzyme activity Analytical Biochemistry 1984, 140: 293-302. PMID: 6091493, DOI: 10.1016/0003-2697(84)90167-2.
- [3H]Captopril binding to membrane associated angiotensin converting enzymeStrittmatter S, Kapiloff M, Snyder S. [3H]Captopril binding to membrane associated angiotensin converting enzyme Biochemical And Biophysical Research Communications 1983, 112: 1027-1033. PMID: 6303332, DOI: 10.1016/0006-291x(83)91721-7.