Robin de Graaf, PhD
Research & Publications
Biography
News
Research Summary
The main focus of Dr. Robin de Graaf's research is the study of cerebral energy metabolism and its relationship to functional activation in human and animal brains. NMR spectroscopy (proton, (inverse) carbon-13, oxygen-17 and phosphorus-31) is the most important tool in the study of metabolic processes and fluxes, non-invasively in vivo. Besides studying brain energy metabolism, a significant part of the research is reserved for technological and methodological improvements to the technique of NMR spectroscopy. These include methods for better water suppression, spatial localization, spectral editing, quantification, and shimming. Dr. de Graaf's current research focus covers areas that are all related to tackling the challenges and grasping the opportunities of MR at very high magnetic fields. Developing methods to achieve magnetic field uniformity throughout the human and animal brain are central to the technological innovation of his research. The problem of magnetic field inhomogeneity is tackled through dynamic shimming and through the use of novel electrical coil element arrays. 13C NMR methods have been pioneered at the Yale MRRC and part of his research is to extend those methods to achieve 3D coverage, higher sensitivity (through 1H detection), and higher specificity (e.g., GABA turnover detection).
Specialized Terms: Cerebral energy metabolismenergy
Extensive Research Description
The main focus of Dr. Robin de Graaf's research is the study of cerebral energy metabolism and its relationship to functional activation in human and animal brains. NMR spectroscopy (proton, (inverse) carbon-13, oxygen-17 and phosphorus-31) is the most important tool in the study of metabolic processes and fluxes, non-invasively in vivo. Besides studying brain energy metabolism, a significant part of the research is reserved for technological and methodological improvements to the technique of NMR spectroscopy. These include methods for better water suppression, spatial localization, spectral editing, quantification, and shimming. Dr. de Graaf's current research focus covers areas that are all related to tackling the challenges and grasping the opportunities of MR at very high magnetic fields. Developing methods to achieve magnetic field uniformity throughout the human and animal brain are central to the technological innovation of his research. The problem of magnetic field inhomogeneity is tackled through dynamic shimming and through the use of novel electrical coil element arrays. 13C NMR methods have been pioneered at the Yale MRRC and part of his research is to extend those methods to achieve 3D coverage, higher sensitivity (through 1H detection), and higher specificity (e.g., GABA turnover detection).
Software Download:
1. Multi-coil shimming of the human brain at 7 T.
2. 3D metabolic flux mapping on rat brain in situ.
3. Development of 1H[13C] NMR methods at 7 T.
4. Compensation of gradient-related magnetic field perturbations.
5. 1H NMR-based metabolomics.
Coauthors
Research Interests
Biomedical Engineering; Energy Metabolism; Magnetic Resonance Spectroscopy; Radiology
Research Image
Research and Education Interests of Robin de Graaf
Selected Publications
- Mapping of exogenous choline uptake and metabolism in rat glioblastoma using deuterium metabolic imaging (DMI)Ip K, Thomas M, Behar K, de Graaf R, De Feyter H. Mapping of exogenous choline uptake and metabolism in rat glioblastoma using deuterium metabolic imaging (DMI) Frontiers In Cellular Neuroscience 2023, 17: 1130816. PMID: 37187610, PMCID: PMC10175635, DOI: 10.3389/fncel.2023.1130816.
- In vivo imaging of cerebral glucose metabolism informs on subacute to chronic post-stroke tissue status – A pilot study combining PET and deuterium metabolic imagingMeerwaldt A, Straathof M, Oosterveld W, van Heijningen C, van Leent M, Toner Y, Munitz J, Teunissen A, Daemen C, van der Toorn A, van Vliet G, van Tilborg G, De Feyter H, de Graaf R, Hol E, Mulder W, Dijkhuizen R. In vivo imaging of cerebral glucose metabolism informs on subacute to chronic post-stroke tissue status – A pilot study combining PET and deuterium metabolic imaging Cerebrovascular And Brain Metabolism Reviews 2023, 43: 778-790. PMID: 36606595, PMCID: PMC10108187, DOI: 10.1177/0271678x221148970.
- NIMG-105. DEUTERIUM METABOLIC IMAGING (DMI) DETECTS A LARGER WARBURG EFFECT IN HIGH-GRADE BRAIN TUMORS AND IN IDH WILD TYPE GLIOMASKim L, De Feyter H, de Graaf R, Fulbright R, Liu Y, Rothman D, Baehring J, Blondin N, Kim P, Omuro A, Chiang V, Moliterno J, Omay S, Piepmeier J, Corbin Z. NIMG-105. DEUTERIUM METABOLIC IMAGING (DMI) DETECTS A LARGER WARBURG EFFECT IN HIGH-GRADE BRAIN TUMORS AND IN IDH WILD TYPE GLIOMAS Neuro-Oncology 2022, 24: vii189-vii189. PMCID: PMC9660955, DOI: 10.1093/neuonc/noac209.723.
- Flow-Based Visual Quality Enhancer for Super-Resolution Magnetic Resonance Spectroscopic ImagingDong S, Hangel G, Chen E, Sun S, Bogner W, Widhalm G, You C, Onofrey J, de Graaf R, Duncan J. Flow-Based Visual Quality Enhancer for Super-Resolution Magnetic Resonance Spectroscopic Imaging 2022, 13609: 3-13. DOI: 10.1007/978-3-031-18576-2_1.
- Multi-scale Super-Resolution Magnetic Resonance Spectroscopic Imaging with Adjustable SharpnessDong S, Hangel G, Bogner W, Widhalm G, Rössler K, Trattnig S, You C, de Graaf R, Onofrey J, Duncan J. Multi-scale Super-Resolution Magnetic Resonance Spectroscopic Imaging with Adjustable Sharpness 2022, 13436: 410-420. DOI: 10.1007/978-3-031-16446-0_39.
- BIMG-21. DEUTERIUM METABOLIC IMAGING (DMI), A NEW, MRI-BASED TECHNIQUE FOR MAPPING BRAIN TUMOR METABOLISM IN VIVOCorbin Z, Fulbright R, Rothman D, de Graaf R, De Feyter H. BIMG-21. DEUTERIUM METABOLIC IMAGING (DMI), A NEW, MRI-BASED TECHNIQUE FOR MAPPING BRAIN TUMOR METABOLISM IN VIVO Neuro-Oncology Advances 2021, 3: i5-i5. PMCID: PMC7994324, DOI: 10.1093/noajnl/vdab024.020.
- Methods | 13C MRS Measurements of in Vivo Rates of the Glutamate/Glutamine and GABA/Glutamine Neurotransmitter CyclesRothman D, De Feyter H, Mason G, de Graaf R, Hyder F, Behar K. Methods | 13C MRS Measurements of in Vivo Rates of the Glutamate/Glutamine and GABA/Glutamine Neurotransmitter Cycles 2021, 688-700. DOI: 10.1016/b978-0-12-819460-7.00341-8.
- NIMG-15. DEUTERIUM METABOLIC IMAGING (DMI) MEASURES THE WARBURG EFFECT IN BRAIN TUMORSCorbin Z, Prado I, Fulbright R, Rothman D, de Graaf R, De Feyter H. NIMG-15. DEUTERIUM METABOLIC IMAGING (DMI) MEASURES THE WARBURG EFFECT IN BRAIN TUMORS Neuro-Oncology 2019, 21: vi164-vi164. PMCID: PMC6847058, DOI: 10.1093/neuonc/noz175.687.
- In Vivo NMR Spectroscopyde Graaf R. In Vivo NMR Spectroscopy 2018 DOI: 10.1002/9781119382461.
- Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivoDe Feyter HM, Behar KL, Corbin ZA, Fulbright RK, Brown PB, McIntyre S, Nixon TW, Rothman DL, de Graaf RA. Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo Science Advances 2018, 4: eaat7314. PMID: 30140744, PMCID: PMC6105304, DOI: 10.1126/sciadv.aat7314.
- Production of 2-Hydroxyglutarate by IDH Mutant Malignancies Induces a BRCAness State That Can be Exploited By PARP Inhibitors and RadiationCorso C, Bindra R, Glazer P, Sulkowski P, Robinson N, Scanlon S, Purshouse K, Bai H, Liu Y, Sundaram R, Hegan D, Fons N, Breuer G, Song Y, Mishra-Gorur K, De Feyter H, de Graaf R, Surovtseva Y, Kachman M, Halene S, Gunel M. Production of 2-Hydroxyglutarate by IDH Mutant Malignancies Induces a BRCAness State That Can be Exploited By PARP Inhibitors and Radiation International Journal Of Radiation Oncology • Biology • Physics 2017, 99: e68. DOI: 10.1016/j.ijrobp.2017.06.754.
- CHAPTER 4 B 0 Shimming Technologyde Graaf R, Juchem C. CHAPTER 4 B 0 Shimming Technology 2016, 166-207. DOI: 10.1039/9781782623878-00166.
- ATPS-14KETOGENIC DIET-INDUCED INCREASE IN MCT1 FACILITATES KETONE BODY OXIDATION IN RAT GLIOMASDe Feyter H, Behar K, Ip K, Hyder F, Drewes L, de Graaf R, Rothman D. ATPS-14KETOGENIC DIET-INDUCED INCREASE IN MCT1 FACILITATES KETONE BODY OXIDATION IN RAT GLIOMAS Neuro-Oncology 2015, 17: v21-v21. PMCID: PMC4638437, DOI: 10.1093/neuonc/nov204.14.
- Superconductor Analog-to-Digital Converter for High-Resolution Magnetic Resonance ImagingRadparvar M, Talalaevskii A, Webber R, Kadin A, Track E, de Graaf R, Nixon T, Rothman D. Superconductor Analog-to-Digital Converter for High-Resolution Magnetic Resonance Imaging IEEE Transactions On Applied Superconductivity 2015, 25: 1-5. DOI: 10.1109/tasc.2014.2361132.
- Chapter 1.4 Spectral Editing and 2D NMRde Graaf R. Chapter 1.4 Spectral Editing and 2D NMR 2014, 40-48. DOI: 10.1016/b978-0-12-401688-0.00004-5.
- Principles of 1H NMR Spectroscopy In Vivode Graaf R. Principles of 1H NMR Spectroscopy In Vivo 2011, 4: 133-147. DOI: 10.1007/978-1-4614-1788-0_5.
- Multislice 1H MRSI of the human brain at 7 T using dynamic B0 and B1 shimmingBoer VO, Klomp DW, Juchem C, Luijten PR, de Graaf RA. Multislice 1H MRSI of the human brain at 7 T using dynamic B0 and B1 shimming Magnetic Resonance In Medicine 2011, 68: 662-670. PMID: 22162089, PMCID: PMC3306521, DOI: 10.1002/mrm.23288.
- Dynamic multi-coil shimming of the human brain at 7TJuchem C, Nixon TW, McIntyre S, Boer VO, Rothman DL, de Graaf RA. Dynamic multi-coil shimming of the human brain at 7T Journal Of Magnetic Resonance 2011, 212: 280-288. PMID: 21824794, PMCID: PMC3183127, DOI: 10.1016/j.jmr.2011.07.005.
- In vivo neurochemical profiling of rat brain by 1H‐[13C] NMR spectroscopy: cerebral energetics and glutamatergic/GABAergic neurotransmissionVan Eijsden P, Behar KL, Mason GF, Braun KP, De Graaf RA. In vivo neurochemical profiling of rat brain by 1H‐[13C] NMR spectroscopy: cerebral energetics and glutamatergic/GABAergic neurotransmission Journal Of Neurochemistry 2009, 112: 24-33. PMID: 19818103, PMCID: PMC2843425, DOI: 10.1111/j.1471-4159.2009.06428.x.
- P151 In vivo 1H-[13C] MRS: A comprehensive tool to investigate the metabolic basis of brain function and diseasevan Eijsden P, Behar K, Mason G, Braun K, de Graaf R. P151 In vivo 1H-[13C] MRS: A comprehensive tool to investigate the metabolic basis of brain function and disease European Journal Of Paediatric Neurology 2009, 13: s67. DOI: 10.1016/s1090-3798(09)70209-0.
- In situ 3D magnetic resonance metabolic imaging of microwave‐irradiated rodent brain: a new tool for metabolomics researchDe Graaf RA, Chowdhury GM, Brown PB, Rothman DL, Behar KL. In situ 3D magnetic resonance metabolic imaging of microwave‐irradiated rodent brain: a new tool for metabolomics research Journal Of Neurochemistry 2009, 109: 494-501. PMID: 19200336, PMCID: PMC2843429, DOI: 10.1111/j.1471-4159.2009.05967.x.
- Energetic costs associated with glutamatergic and gabaergic neurotransmissionde Graaf R, Patel A, Mason G, Rothman D, Shulman R, Behar K. Energetic costs associated with glutamatergic and gabaergic neurotransmission Cerebrovascular And Brain Metabolism Reviews 2005, 25: s706-s706. DOI: 10.1038/sj.jcbfm.9591524.0707.
- Cerebral pyruvate carboxylase flux is unaltered during bicuculline‐seizuresPatel A, Chowdhury G, de Graaf R, Rothman D, Shulman R, Behar K. Cerebral pyruvate carboxylase flux is unaltered during bicuculline‐seizures Journal Of Neuroscience Research 2005, 80: 738-738. DOI: 10.1002/jnr.20554.
- Calculation of RF Peak Power for 2D Arbitrary Shape Excitation in MRIQin Q, De Graaf R, Does M, Gore J. Calculation of RF Peak Power for 2D Arbitrary Shape Excitation in MRI Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2005, 2005: 1340-1343. PMID: 17282444, DOI: 10.1109/iembs.2005.1616675.
- In Vivo NMR Spectroscopy – Techniques; Direct Detection; MRS; Kinetics and Labels; Fluxes; Concentrationsde Graaf R. In Vivo NMR Spectroscopy – Techniques; Direct Detection; MRS; Kinetics and Labels; Fluxes; Concentrations 2004, 7-29. DOI: 10.1002/0470011505.ch2.
- Techniques–MRS, fMRI, 13C NMR, Indirect Detection of 13Cde Graaf R. Techniques–MRS, fMRI, 13C NMR, Indirect Detection of 13C 2004, 31-52. DOI: 10.1002/0470020520.ch3.
- Corrigendum to “A comparison of 13C NMR measurements of the rates of glutamine synthesis and the tricarboxylic acid cycle during oral and intravenous administration of [1-13C]glucose” [Brain Research Protocols, 10 (2003) 181–190]☆Mason G, Petersen K, de Graaf R, Kanamatsu T, Otsuki T, Rothman D. Corrigendum to “A comparison of 13C NMR measurements of the rates of glutamine synthesis and the tricarboxylic acid cycle during oral and intravenous administration of [1-13C]glucose” [Brain Research Protocols, 10 (2003) 181–190]☆ Brain Research 2003, 11: 143. DOI: 10.1016/s1385-299x(03)00021-7.
- Detection of γ-Aminobutyric Acid (GABA) by Longitudinal Scalar Order Difference Editingde Graaf R, Rothman D. Detection of γ-Aminobutyric Acid (GABA) by Longitudinal Scalar Order Difference Editing Journal Of Magnetic Resonance 2001, 152: 124-131. PMID: 11531371, DOI: 10.1006/jmre.2001.2371.
- Single‐shot diffusion trace 1H NMR spectroscopyde Graaf R, Braun K, Nicolay K. Single‐shot diffusion trace 1H NMR spectroscopy Magnetic Resonance In Medicine 2001, 45: 741-748. PMID: 11323799, DOI: 10.1002/mrm.1101.
- Differentiation of Glucose Transport in Human Brain Gray and White Matterde Graaf R, Pan J, Telang F, Lee J, Brown P, Novotny E, Hetherington H, Rothman D. Differentiation of Glucose Transport in Human Brain Gray and White Matter Cerebrovascular And Brain Metabolism Reviews 2001, 21: 483-492. PMID: 11333358, DOI: 10.1097/00004647-200105000-00002.
- Diffusion NMR spectroscopyNicolay K, Braun K, de Graaf R, Dijkhuizen R, Kruiskamp M. Diffusion NMR spectroscopy NMR In Biomedicine 2001, 14: 94-111. PMID: 11320536, DOI: 10.1002/nbm.686.
- In Vivo 31P-NMR Diffusion Spectroscopy of ATP and Phosphocreatine in Rat Skeletal Musclede Graaf R, van Kranenburg A, Nicolay K. In Vivo 31P-NMR Diffusion Spectroscopy of ATP and Phosphocreatine in Rat Skeletal Muscle Biophysical Journal 2000, 78: 1657-1664. PMID: 10733948, PMCID: PMC1300762, DOI: 10.1016/s0006-3495(00)76717-8.
- In vivo detection and quantification of scalar coupled 1H NMR resonancesde Graaf R, Rothman D. In vivo detection and quantification of scalar coupled 1H NMR resonances Concepts In Magnetic Resonance 2000, 13: 32-76. DOI: 10.1002/1099-0534(2001)13:1<32::aid-cmr4>3.0.co;2-j.
- Magnetic coupling of creatine/phosphocreatine protons in rat skeletal muscle, as studied by 1H‐magnetization transfer MRSKruiskamp M, de Graaf R, van Vliet G, Nicolay K. Magnetic coupling of creatine/phosphocreatine protons in rat skeletal muscle, as studied by 1H‐magnetization transfer MRS Magnetic Resonance In Medicine 1999, 42: 665-672. PMID: 10502754, DOI: 10.1002/(sici)1522-2594(199910)42:4<665::aid-mrm7>3.0.co;2-9.
- Global HDO uptake in human glioma xenografts is related to the perfused capillary distributionvan der Sanden B, Zandt H, Hoofd L, de Graaf R, Nicolay K, Rijken P, van der Kogel A, Heerschap A. Global HDO uptake in human glioma xenografts is related to the perfused capillary distribution Magnetic Resonance In Medicine 1999, 42: 479-489. PMID: 10467292, DOI: 10.1002/(sici)1522-2594(199909)42:3<479::aid-mrm10>3.0.co;2-h.
- Off‐resonance metabolite magnetization transfer measurements on rat brain in situde Graaf R, van Kranenburg A, Nicolay K. Off‐resonance metabolite magnetization transfer measurements on rat brain in situ Magnetic Resonance In Medicine 1999, 41: 1136-1144. PMID: 10371445, DOI: 10.1002/(sici)1522-2594(199906)41:6<1136::aid-mrm9>3.0.co;2-g.
- Effects of Hypoxia-Ischemia and Inhibition of Nitric Oxide Synthase on Cerebral Energy Metabolism in Newborn PigletsGroenendaal F, De Graaf R, Van Vliet G, Nicolay K. Effects of Hypoxia-Ischemia and Inhibition of Nitric Oxide Synthase on Cerebral Energy Metabolism in Newborn Piglets Pediatric Research 1999, 45: 827-833. PMID: 10367773, DOI: 10.1203/00006450-199906000-00008.
- BRAIN ENERGY METABOLISM, ELECTROCORTICAL BRAIN ACTIVITY (ECBA), CEREBRAL BLOOD VOLUME (tHB) AND REGIONAL SATURATION (rSO2) OF NEWBORN PIGLETS FOLLOWING HYPOXIA-ISCHEMIA (HI)Ioroi T, Peeters C, Braun K, De Graaf R, V.D. Tweel E, Ioroi T, Nicolay K, Van Bel F, Groenendaal F. BRAIN ENERGY METABOLISM, ELECTROCORTICAL BRAIN ACTIVITY (ECBA), CEREBRAL BLOOD VOLUME (tHB) AND REGIONAL SATURATION (rSO2) OF NEWBORN PIGLETS FOLLOWING HYPOXIA-ISCHEMIA (HI) Pediatric Research 1999, 45: 904-904. DOI: 10.1203/00006450-199906000-00124.
- ALLOPURINOL (ALLO), DEFEROXAMINE (DFO), AND BRAIN ENERGY METABOLISM OF NEWBORN PIGLETS FOLLOWING HYPOXIA-ISCHEMIAIoroi T, Peeters C, Braun K, de Graaf R, van den Tweel E, Ioroi T, Nicolay K, van Bel F, Groenendaal F. ALLOPURINOL (ALLO), DEFEROXAMINE (DFO), AND BRAIN ENERGY METABOLISM OF NEWBORN PIGLETS FOLLOWING HYPOXIA-ISCHEMIA Pediatric Research 1999, 45: 907-907. DOI: 10.1203/00006450-199906000-00142.
- Spatial Assessment of the Dynamics of Lactate Formation in Focal Ischemic Rat BrainDijkhuizen R, de Graaf R, Garwood M, Tulleken K, Nicolay K. Spatial Assessment of the Dynamics of Lactate Formation in Focal Ischemic Rat Brain Cerebrovascular And Brain Metabolism Reviews 1999, 19: 376-379. PMID: 10197507, DOI: 10.1097/00004647-199904000-00003.
- In vivo observation of lactate methyl proton magnetization transfer in rat C6 gliomaLuo Y, Rydzewski J, de Graaf R, Gruetter R, Garwood M, Schleich T. In vivo observation of lactate methyl proton magnetization transfer in rat C6 glioma Magnetic Resonance In Medicine 1999, 41: 676-685. PMID: 10332842, DOI: 10.1002/(sici)1522-2594(199904)41:4<676::aid-mrm5>3.0.co;2-d.
- Cerebral Metabolism Measured Using Proton and Phosphorous Magnetic Resonance Spectroscopy (MRS) Following Hypoxia Ischemia (HI) and Administration of Allopurinol (ALLO) and Deferoxamine (DFO)Peeters C, Van Den Tweel E, De Graaf R, Braun K, Nicolay K, Van Bel F, Groenendaal F. Cerebral Metabolism Measured Using Proton and Phosphorous Magnetic Resonance Spectroscopy (MRS) Following Hypoxia Ischemia (HI) and Administration of Allopurinol (ALLO) and Deferoxamine (DFO) Pediatric Research 1999, 45: 345-345. DOI: 10.1203/00006450-199904020-02053.
- Changes in the Diffusion of Water and Intracellular Metabolites After Excitotoxic Injury and Global Ischemia in Neonatal Rat BrainDijkhuizen R, de Graaf R, Tulleken K, Nicolay K. Changes in the Diffusion of Water and Intracellular Metabolites After Excitotoxic Injury and Global Ischemia in Neonatal Rat Brain Cerebrovascular And Brain Metabolism Reviews 1999, 19: 341-349. PMID: 10078886, DOI: 10.1097/00004647-199903000-00012.
- In vivo 1H MR spectroscopic imaging and difusion weighted mri in experimental hydrocephalusBraun K, de Graaf R, Vandertop W, Gooskens R, Tulleken K, Nicolay K. In vivo 1H MR spectroscopic imaging and difusion weighted mri in experimental hydrocephalus Magnetic Resonance In Medicine 1998, 40: 832-839. PMID: 9840827, DOI: 10.1002/mrm.1910400608.
- Adiabatic water suppression using frequency selective excitationde Graaf R, Nicolay K. Adiabatic water suppression using frequency selective excitation Magnetic Resonance In Medicine 1998, 40: 690-696. PMID: 9797151, DOI: 10.1002/mrm.1910400508.
- An Off-resonance Rotating Frame Relaxation Experiment for the Investigation of Macromolecular Dynamics Using Adiabatic RotationsMulder F, de Graaf R, Kaptein R, Boelens R. An Off-resonance Rotating Frame Relaxation Experiment for the Investigation of Macromolecular Dynamics Using Adiabatic Rotations Journal Of Magnetic Resonance 1998, 131: 351-357. PMID: 9571112, DOI: 10.1006/jmre.1998.1380.
- Cerebral ischemia and white matter edema in experimental hydrocephalus: a combined in vivo MRI and MRS studyBraun K, Dijkhuizen R, de Graaf R, Nicolay K, Vandertop W, Gooskens R, Tulleken K. Cerebral ischemia and white matter edema in experimental hydrocephalus: a combined in vivo MRI and MRS study Brain Research 1997, 757: 295-298. PMID: 9200761, DOI: 10.1016/s0006-8993(97)00345-4.
- CEREBRAL METABOLISM OF NEWBORN PIGLETS FOLLOWING HYPOXIA- ISCHEMIA AND NITRIC OXIDE SYNTHASE INHIBITION, EXAMINED USING PROTON AND PHOSPHOROUS MAGNETIC RESONANCE SPECTROSCOPY. • 1729Groenendaal F, De Graaf R, Nicolay K. CEREBRAL METABOLISM OF NEWBORN PIGLETS FOLLOWING HYPOXIA- ISCHEMIA AND NITRIC OXIDE SYNTHASE INHIBITION, EXAMINED USING PROTON AND PHOSPHOROUS MAGNETIC RESONANCE SPECTROSCOPY. • 1729 Pediatric Research 1997, 41: 291-291. DOI: 10.1203/00006450-199704001-01748.
- Adiabatic rf pulses: Applications to in vivo NMRDe Graaf R, Nicolay K. Adiabatic rf pulses: Applications to in vivo NMR Concepts In Magnetic Resonance 1997, 9: 247-268. DOI: 10.1002/(sici)1099-0534(1997)9:4<247::aid-cmr4>3.0.co;2-z.
- Multislice Imaging with Adiabatic Pulses Using Transverse Hadamard Encodingde Graaf R, Nicolay K. Multislice Imaging with Adiabatic Pulses Using Transverse Hadamard Encoding Journal Of Magnetic Resonance 1996, 113: 97-101. DOI: 10.1006/jmrb.1996.0162.
- Single‐shot, B1‐insensitive slice selection with a gradient‐modulated adiabatic pulse, BISS‐8de Graaf R, Nicolay K, Garwood M. Single‐shot, B1‐insensitive slice selection with a gradient‐modulated adiabatic pulse, BISS‐8 Magnetic Resonance In Medicine 1996, 35: 652-657. PMID: 8722815, DOI: 10.1002/mrm.1910350505.
- R. A. de Graaf, In vivo NMR spectroscopy. Principles and techniques, Second edition, John Wiley, Chichester (2008)R. A. de Graaf, In vivo NMR spectroscopy. Principles and techniques, Second edition, John Wiley, Chichester (2008)
Clinical Trials
Conditions | Study Title |
---|---|
Diabetes Mellitus - Type 1; Diseases of the Endocrine System; Diseases of the Nervous System | Impact of Hypoglycemia on Brain Ketone and Neurotransmitter Metabolism in Type 1 DM |