2021
MicroRNA regulation of cholesterol metabolism
Citrin KM, Fernández‐Hernando C, Suárez Y. MicroRNA regulation of cholesterol metabolism. Annals Of The New York Academy Of Sciences 2021, 1495: 55-77. PMID: 33521946, PMCID: PMC8938903, DOI: 10.1111/nyas.14566.Peer-Reviewed Original ResearchConceptsDifferent cell typesCell typesMultiple mRNA targetsCholesterol homeostasisSmall noncoding RNAsMicroRNA activityCholesterol-laden cellsMicroRNA regulationCholesterol metabolismMRNA targetsNoncoding RNAsPosttranscriptional levelGene expressionSpecialized functionsMicroRNAsCurrent knowledgeTarget interactionsHomeostasisMetabolismPathwayExpressionMultiple stagesRNARegulationDistinctive effects
2019
ANGPTL4 in Metabolic and Cardiovascular Disease
Aryal B, Price NL, Suarez Y, Fernández-Hernando C. ANGPTL4 in Metabolic and Cardiovascular Disease. Trends In Molecular Medicine 2019, 25: 723-734. PMID: 31235370, PMCID: PMC6779329, DOI: 10.1016/j.molmed.2019.05.010.Peer-Reviewed Original ResearchConceptsCardiovascular diseaseLipoprotein lipaseRisk of atherosclerosisRole of ANGPTL4Type 2 diabetesLow-density lipoproteinFatty acidsMurine studiesPeripheral tissuesRich lipoproteinsLPL activityANGPTL4 functionsDensity lipoproteinMetabolic diseasesPossible autocrineParacrine formsDiseaseANGPTL4Disease developmentLipoproteinRecent findingsRiskTissueDifferent tissuesAtherosclerosis
2017
Posttranscriptional regulation of lipid metabolism by non-coding RNAs and RNA binding proteins
Singh AK, Aryal B, Zhang X, Fan Y, Price NL, Suárez Y, Fernández-Hernando C. Posttranscriptional regulation of lipid metabolism by non-coding RNAs and RNA binding proteins. Seminars In Cell And Developmental Biology 2017, 81: 129-140. PMID: 29183708, PMCID: PMC5975105, DOI: 10.1016/j.semcdb.2017.11.026.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCardiovascular DiseasesGene Expression RegulationHomeostasisHumansLipid MetabolismMicroRNAsRNA-Binding ProteinsRNA, Long NoncodingConceptsLipid metabolismNon-coding RNAImportance of microRNAsNumber of miRNAsRole of lncRNAsLipid-related genesTranscriptional regulationCoding RNAsPosttranscriptional regulationPosttranscriptional levelMiRNA expressionHigh abundanceLncRNAsRNACholesterol homeostasisMiR-33MiR-148aSpecific roleMiRNAsRegulationLipoprotein metabolismRecent findingsMetabolismProteinExpression
2016
“Small Blood Vessels: Big Health Problems?”: Scientific Recommendations of the National Institutes of Health Workshop
Bosetti F, Galis Z, Bynoe M, Charette M, Cipolla M, del Zoppo G, Gould D, Hatsukami T, Jones T, Koenig J, Lutty G, Maric‐Bilkan C, Stevens T, Tolunay H, Koroshetz W, Participants T, Agalliu D, Antonetti D, Boehm M, Brooks C, Caron K, Chilian W, Daemen M, D'Amato R, Davis T, Ergul A, Faber J, Gomez A, Grayson P, Grumbach I, Grutzendler J, Gu C, Gutterman D, Hallenbeck J, Herman I, Humphrey J, Iadecola C, Inscho E, Kleinfeld D, Lo E, Lopez J, Macknik S, Malik A, Mayadas T, McGavern D, Meininger G, Miller V, Nedergaard M, Nelson M, Peirce‐Cottler S, Ramadan I, Rosenberg G, Schiffrin E, Searson P, Stachenfeld N, Stan R, Suarez Y, Ubogu E, Vexler Z, Weyand C, Zlokovic B. “Small Blood Vessels: Big Health Problems?”: Scientific Recommendations of the National Institutes of Health Workshop. Journal Of The American Heart Association 2016, 5: e004389. PMID: 27815267, PMCID: PMC5210346, DOI: 10.1161/jaha.116.004389.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMicro-RNAs and High-Density Lipoprotein Metabolism
Canfrán-Duque A, Lin CS, Goedeke L, Suárez Y, Fernández-Hernando C. Micro-RNAs and High-Density Lipoprotein Metabolism. Arteriosclerosis Thrombosis And Vascular Biology 2016, 36: 1076-1084. PMID: 27079881, PMCID: PMC5315356, DOI: 10.1161/atvbaha.116.307028.BooksConceptsReverse cholesterol transportCardiovascular diseaseHDL metabolismCholesterol transportIschemic heart diseaseCause of deathEarlier epidemiological studiesPotential therapeutic targetBile acid synthesisMicro-RNAsCardioprotective effectsHeart diseaseEpidemiological studiesImproved preventionCholesterol effluxTherapeutic targetDensity lipoproteinCholesterol uptakeDiseaseArtery wallHDL biogenesisInverse correlationHDLLiverAcid synthesis
2013
MicroRNAs as pharmacological targets in endothelial cell function and dysfunction
Chamorro-Jorganes A, Araldi E, Suárez Y. MicroRNAs as pharmacological targets in endothelial cell function and dysfunction. Pharmacological Research 2013, 75: 15-27. PMID: 23603154, PMCID: PMC3752325, DOI: 10.1016/j.phrs.2013.04.002.Peer-Reviewed Original ResearchConceptsEndothelial cell functionShort non-coding RNAsCell functionPost-transcriptional levelNon-coding RNAsEndothelial-specific microRNAsGene expressionMorphogenic capacityCritical regulatorNormal endothelial cell functionMicroRNAsCell dysfunctionEndothelial cell dysfunctionPathophysiological conditionsLatest insightsParacrine mannerPharmacological targetsEndothelial cellsTherapeutic potentialBarrier functionTraffickingRNALeukocyte traffickingRegulatorTarget
2012
New insights into microRNA-29 regulation: A new key player in cardiovascular disease
Suárez Y, Fernández-Hernando C. New insights into microRNA-29 regulation: A new key player in cardiovascular disease. Journal Of Molecular And Cellular Cardiology 2012, 52: 584-586. PMID: 22285722, DOI: 10.1016/j.yjmcc.2012.01.009.Commentaries, Editorials and LettersAnimalsCardiovascular DiseasesEpigenesis, GeneticHumansLipoproteins, LDLMicroRNAsSignal Transduction
2011
The Role of MicroRNAs in Cholesterol Efflux and Hepatic Lipid Metabolism
Moore KJ, Rayner KJ, Suárez Y, Fernández-Hernando C. The Role of MicroRNAs in Cholesterol Efflux and Hepatic Lipid Metabolism. Annual Review Of Nutrition 2011, 31: 49-63. PMID: 21548778, PMCID: PMC3612434, DOI: 10.1146/annurev-nutr-081810-160756.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAnimalsCardiovascular DiseasesCholesterolFatty AcidsHumansLipid MetabolismLipoproteins, HDLLiverMicroRNAsConceptsGene expressionSterol response element-binding proteinMiR-33Fatty acid β-oxidationElement-binding proteinFatty acid homeostasisResponse element-binding proteinRole of microRNAsCholesterol effluxIntronic miRNALipid metabolismRNA bindsPosttranscriptional controlUntranslated regionAbundant miRNABiological processesElegant mechanismMiR-122Lipid homeostasisΒ-oxidationAcid homeostasisCell phenotypeMiRNAsHepatic lipid metabolismMicroRNAsmiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling
Dávalos A, Goedeke L, Smibert P, Ramírez CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U, Pastor-Pareja JC, Esplugues E, Fisher EA, Penalva LO, Moore KJ, Suárez Y, Lai EC, Fernández-Hernando C. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 9232-9237. PMID: 21576456, PMCID: PMC3107310, DOI: 10.1073/pnas.1102281108.Peer-Reviewed Original ResearchConceptsFatty acid metabolismFatty acid oxidationMiR-33aInsulin receptor substrate 2Sirtuin 6Acid metabolismInsulin-signaling pathwayIntronic microRNAsSterol regulatory element-binding protein 2Acid oxidationHost genesKey enzymeHepatic cell linesMetabolic syndromeCarnitine palmitoyltransferase 1AMetabolic pathwaysSubstrate 2Cellular imbalanceProtein 2Cholesterol homeostasisGenesCell linesLevels of HDLPathwayMetabolism results
2009
MicroRNAs As Novel Regulators of Angiogenesis
Suárez Y, Sessa WC. MicroRNAs As Novel Regulators of Angiogenesis. Circulation Research 2009, 104: 442-454. PMID: 19246688, PMCID: PMC2760389, DOI: 10.1161/circresaha.108.191270.Peer-Reviewed Original ResearchConceptsInvolvement of miRNAsShort noncoding RNAsPosttranscriptional regulationNoncoding RNAsNovel regulatorKey regulatorNegative regulatorGene expressionAspects of developmentNew blood vesselsRegulatorVascular biologyCurrent experimental evidencePotential therapeutic applicationsMiRNAsMicroRNAsAngiogenic processEndothelial cellsRegulationAbnormal angiogenesisTherapeutic applicationsAngiogenesisRNABiologyHomeostasis
2002
A double mutant [N543H+2393del9] allele in the LDL receptor gene in familial hypercholesterolemia: effect on plasma cholesterol levels and cardiovascular disease
Castillo S, Reyes G, Tejedor D, Mozas P, Suarez Y, Lasuncion M, Cenarro A, Civeira F, Alonso R, Mata P, Pocovi M, Group of FH O. A double mutant [N543H+2393del9] allele in the LDL receptor gene in familial hypercholesterolemia: effect on plasma cholesterol levels and cardiovascular disease. Human Mutation 2002, 20: 477-477. PMID: 12442279, DOI: 10.1002/humu.9087.Peer-Reviewed Original ResearchConceptsDouble mutant alleleLDL receptor geneFamilial hypercholesterolemiaHomozygous patientsReceptor geneSpanish FH patientsCholesterol-lowering treatmentLDL cholesterol reductionPlasma cholesterol levelsAbility of LDLMitogen-stimulated lymphocytesCholesterol levelsCholesterol reductionFH patientsCardiovascular diseasePatientsHomozygous FHHeterozygous patientsUnrelated patientsCytometric analysisHypercholesterolemiaLDL bindingDefective LDL bindingCell proliferationGenetic disorders