2024
Fatty acid binding protein 5 suppression attenuates obesity-induced hepatocellular carcinoma by promoting ferroptosis and intratumoral immune rewiring
Sun J, Esplugues E, Bort A, Cardelo M, Ruz-Maldonado I, Fernández-Tussy P, Wong C, Wang H, Ojima I, Kaczocha M, Perry R, Suárez Y, Fernández-Hernando C. Fatty acid binding protein 5 suppression attenuates obesity-induced hepatocellular carcinoma by promoting ferroptosis and intratumoral immune rewiring. Nature Metabolism 2024, 6: 741-763. PMID: 38664583, DOI: 10.1038/s42255-024-01019-6.Peer-Reviewed Original ResearchConceptsFatty acid binding protein 5Tumor-associated macrophagesHepatocellular carcinomaImmunosuppressive phenotype of tumor-associated macrophagesIncreased CD8+ T cell activationCD8+ T cell activationPhenotype of tumor-associated macrophagesPro-inflammatory tumor microenvironmentCo-stimulatory molecules CD80T cell activationHepatocellular carcinoma burdenTransformation of hepatocytesBinding protein 5Potential therapeutic approachImmunosuppressive phenotypeTumor microenvironmentFerroptosis-induced cell deathMale miceEnhanced ferroptosisTherapeutic approachesPharmacological inhibitionGenetic ablationIncreased expressionSingle-cell atlasAnalysis of transformed cells
2014
Improved repair of dermal wounds in mice lacking microRNA‐155
van Solingen C, Araldi E, Chamorro‐Jorganes A, Fernández‐Hernando C, Suárez Y. Improved repair of dermal wounds in mice lacking microRNA‐155. Journal Of Cellular And Molecular Medicine 2014, 18: 1104-1112. PMID: 24636235, PMCID: PMC4112003, DOI: 10.1111/jcmm.12255.Peer-Reviewed Original ResearchConceptsMiR-155Wound tissueWound healingIncreased expressionWound closureImpaired wound repairAnalysis of woundsSkin of miceMiR-155 targetsType 1 collagenWild-type animalsInflammatory mediatorsWT miceWound healing processImmune responseInterleukin-4Healthy skinMicroRNA-155Punch woundsMiceElevated numbersBeneficial effectsWound closingDermal wound healingDermal wounds