2024
Cryo-EM structures reveal how phosphate release from Arp3 weakens actin filament branches formed by Arp2/3 complex
Chavali S, Chou S, Cao W, Pollard T, De La Cruz E, Sindelar C. Cryo-EM structures reveal how phosphate release from Arp3 weakens actin filament branches formed by Arp2/3 complex. Nature Communications 2024, 15: 2059. PMID: 38448439, PMCID: PMC10918085, DOI: 10.1038/s41467-024-46179-x.Peer-Reviewed Original ResearchConceptsArp2/3 complexActin filamentsCryo-EM structureMother filamentDaughter filamentArp2/3 complex nucleates branched actin filamentsActin filament branchingBranched actin filamentsDissociation of PiADP-PiFilament branchingOrganelle movementADP stateBranch junctionsArp3A-resolutionActinArp2/3ADP-BeFxFilamentsADPPhosphate releaseFilament mechanismArp2OrganellesDistinct functional constraints driving conservation of the cofilin N-terminal regulatory tail
Sexton J, Potchernikov T, Bibeau J, Casanova-Sepúlveda G, Cao W, Lou H, Boggon T, De La Cruz E, Turk B. Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail. Nature Communications 2024, 15: 1426. PMID: 38365893, PMCID: PMC10873347, DOI: 10.1038/s41467-024-45878-9.Peer-Reviewed Original ResearchConceptsN-terminal regionActin bindingSequence requirementsLIM kinaseAnalysis of individual variantsInactivates cofilinS. cerevisiaeRegulatory tailFamily proteinsActin depolymerizationPhosphorylation sitesKinase recognitionSequence variantsInhibitory phosphorylationCofilinN-terminusIndividual variantsFunctional constraintsActinDisordered sequencesPhosphorylationSequenceBiochemical analysisSequence constraintsKinase
2023
Friction patterns guide actin network contraction
Colin A, Orhant-Prioux M, Guérin C, Savinov M, Cao W, Vianay B, Scarfone I, Roux A, De La Cruz E, Mogilner A, Théry M, Blanchoin L. Friction patterns guide actin network contraction. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2300416120. PMID: 37725653, PMCID: PMC10523593, DOI: 10.1073/pnas.2300416120.Peer-Reviewed Original ResearchConceptsFriction forceTwist response of actin filaments
Bibeau J, Pandit N, Gray S, Nejad N, Sindelar C, Cao W, De La Cruz E. Twist response of actin filaments. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2208536120. PMID: 36656858, PMCID: PMC9942836, DOI: 10.1073/pnas.2208536120.Peer-Reviewed Original Research
2021
Structural basis of fast- and slow-severing actin–cofilactin boundaries
Hocky GM, Sindelar CV, Cao W, Voth GA, De La Cruz EM. Structural basis of fast- and slow-severing actin–cofilactin boundaries. Journal Of Biological Chemistry 2021, 296: 100337. PMID: 33508320, PMCID: PMC7961102, DOI: 10.1016/j.jbc.2021.100337.Peer-Reviewed Original Research
2020
Force and phosphate release from Arp2/3 complex promote dissociation of actin filament branches
Pandit NG, Cao W, Bibeau J, Johnson-Chavarria EM, Taylor EW, Pollard TD, De La Cruz EM. Force and phosphate release from Arp2/3 complex promote dissociation of actin filament branches. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 13519-13528. PMID: 32461373, PMCID: PMC7306818, DOI: 10.1073/pnas.1911183117.Peer-Reviewed Original ResearchConceptsActin filament branchesArp2/3 complexMother filamentFilament branchesTotal internal reflection fluorescence microscopyEssential cellular functionsMechanical forcesActin filament networkReflection fluorescence microscopyCellular functionsActin networkCell motilityComplex generatesActin filamentsArp2/3Filament networkFluorescence microscopyState 1Branch junctionsState 2FilamentsComplexesPhosphate releaseMuscle actinADP
2019
Active cargo positioning in antiparallel transport networks
Richard M, Blanch-Mercader C, Ennomani H, Cao W, De La Cruz EM, Joanny JF, Jülicher F, Blanchoin L, Martin P. Active cargo positioning in antiparallel transport networks. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 14835-14842. PMID: 31289230, PMCID: PMC6660773, DOI: 10.1073/pnas.1900416116.Peer-Reviewed Original Research
2016
Architecture and Connectivity Govern Actin Network Contractility
Ennomani H, Letort G, Guérin C, Martiel JL, Cao W, Nédélec F, De La Cruz EM, Théry M, Blanchoin L. Architecture and Connectivity Govern Actin Network Contractility. Current Biology 2016, 26: 616-626. PMID: 26898468, PMCID: PMC4959279, DOI: 10.1016/j.cub.2015.12.069.Peer-Reviewed Original Research
2012
Actin Network Architecture Can Determine Myosin Motor Activity
Reymann AC, Boujemaa-Paterski R, Martiel JL, Guérin C, Cao W, Chin HF, De La Cruz EM, Théry M, Blanchoin L. Actin Network Architecture Can Determine Myosin Motor Activity. Science 2012, 336: 1310-1314. PMID: 22679097, PMCID: PMC3649007, DOI: 10.1126/science.1221708.Peer-Reviewed Original Research
2011
Actin Filament Dynamics in the Actomyosin VI Complex Is Regulated Allosterically by Calcium–Calmodulin Light Chain
Prochniewicz E, Pierre A, McCullough BR, Chin HF, Cao W, Saunders LP, Thomas DD, De La Cruz EM. Actin Filament Dynamics in the Actomyosin VI Complex Is Regulated Allosterically by Calcium–Calmodulin Light Chain. Journal Of Molecular Biology 2011, 413: 584-592. PMID: 21910998, PMCID: PMC3633491, DOI: 10.1016/j.jmb.2011.08.058.Peer-Reviewed Original ResearchConceptsActin filament dynamicsMyosin VIFilament dynamicsMicrosecond dynamicsCaM-dependent mannerCalmodulin light chainsLight chainActin bindingActin filamentsDependent CaMIQ domainCaM-dependent regulationFluorescence microscopyEnzymatic activityTransient phosphorescence anisotropyATP utilizationFinal anisotropyMicrosecond rotational dynamicsPhosphorescence anisotropyMyosinStructural dynamicsAnisotropy decaySuch modulationActinRegulation
2008
Widely Distributed Residues in Thymosin β4 Are Critical for Actin Binding
Au JK, Olivares AO, Henn A, Cao W, Safer D, De La Cruz EM. Widely Distributed Residues in Thymosin β4 Are Critical for Actin Binding. Biochemistry 2008, 47: 4181-4188. PMID: 18327913, PMCID: PMC2587058, DOI: 10.1021/bi701769u.Peer-Reviewed Original ResearchConceptsActin Binding AffinityActin bindingProline residuesHydrophobic residuesAlanine residuesLysine residuesPro27Thymosin beta4Actin monomersPro29MutagenesisHydrophobic contactsLeu28Slow association rateResiduesLys19Thymosin β4Ile34Tbeta4Lys18Binding affinitiesTwo-step mechanismAssociation ratePro4Cis-trans isomerization
2005
Magnesium, ADP, and Actin Binding Linkage of Myosin V: Evidence for Multiple Myosin V−ADP and Actomyosin V−ADP States †
Hannemann DE, Cao W, Olivares AO, Robblee JP, De La Cruz EM. Magnesium, ADP, and Actin Binding Linkage of Myosin V: Evidence for Multiple Myosin V−ADP and Actomyosin V−ADP States †. Biochemistry 2005, 44: 8826-8840. PMID: 15952789, DOI: 10.1021/bi0473509.Peer-Reviewed Original Research