2024
Local-structure-preservation and redundancy-removal-based feature selection method and its application to the identification of biomarkers for schizophrenia
Xing Y, Pearlson G, Kochunov P, Calhoun V, Du Y. Local-structure-preservation and redundancy-removal-based feature selection method and its application to the identification of biomarkers for schizophrenia. NeuroImage 2024, 299: 120839. PMID: 39251116, PMCID: PMC11491165, DOI: 10.1016/j.neuroimage.2024.120839.Peer-Reviewed Original ResearchConceptsSelection methodClassification accuracy gainsGraph-based regularizationHigh-dimensional dataFeature selection methodLocal structural informationSparse regularizationAblation studiesFeature subsetPublic datasetsFeature selectionClassification accuracyExperimental evaluationAccuracy gainsSelection techniquesNetwork connectivityData transformationSuperior performanceDatasetConvergence analysisStructural informationClassificationRegularizationFeaturesDisorder prediction
2023
Multi-scale convolutional recurrent neural network for psychiatric disorder identification in resting-state EEG
Yan W, Yu L, Liu D, Sui J, Calhoun V, Lin Z. Multi-scale convolutional recurrent neural network for psychiatric disorder identification in resting-state EEG. Frontiers In Psychiatry 2023, 14: 1202049. PMID: 37441141, PMCID: PMC10333510, DOI: 10.3389/fpsyt.2023.1202049.Peer-Reviewed Original ResearchConvolutional recurrent neural networkRecurrent neural networkResting-state EEGNeural networkPsychiatric disordersDeep learning classification modelLow-dimensional subspaceTwo-class classificationDesigning individualized treatmentLearning classification modelsEEG backgroundClassification modelHealthy controlsDepressive disorderSpatiotemporal informationClinical observationsDisease severityAccurate classificationIndividualized treatmentBiomarkersDisorder classificationDisorder identificationDisordersClassificationNeuroimaging biomarkersNovel methods for elucidating modality importance in multimodal electrophysiology classifiers
Ellis C, Sendi M, Zhang R, Carbajal D, Wang M, Miller R, Calhoun V. Novel methods for elucidating modality importance in multimodal electrophysiology classifiers. Frontiers In Neuroinformatics 2023, 17: 1123376. PMID: 37006636, PMCID: PMC10050434, DOI: 10.3389/fninf.2023.1123376.Peer-Reviewed Original ResearchExplainability approachesExplainability methodsAutomated sleep stage classificationRaw time series dataConvolutional neural networkDeep learning classifierSleep stage classificationNovel methodMultimodal classificationLearning classifiersNeural networkClassifierLocal explanationsGlobal explanationsExplainabilitySubject-level differencesTime series dataAdvancement of personalized medicineGlobal methodClinical classifierClassificationClinical variablesElectrophysiological studiesStage classificationElectrophysiological classification