2021
Indoloxytriazines as binding molecules for the JAK2 JH2 pseudokinase domain and its V617F variant
Newton AS, Liosi ME, Henry SP, Deiana L, Faver JC, Krimmer SG, Puleo DE, Schlessinger J, Jorgensen WL. Indoloxytriazines as binding molecules for the JAK2 JH2 pseudokinase domain and its V617F variant. Tetrahedron Letters 2021, 77: 153248. PMID: 34393283, PMCID: PMC8357305, DOI: 10.1016/j.tetlet.2021.153248.Peer-Reviewed Original Research
2017
Adding a Hydrogen Bond May Not Help: Naphthyridinone vs Quinoline Inhibitors of Macrophage Migration Inhibitory Factor
Dawson TK, Dziedzic P, Robertson MJ, Cisneros J, Krimmer SG, Newton AS, Tirado-Rives J, Jorgensen WL. Adding a Hydrogen Bond May Not Help: Naphthyridinone vs Quinoline Inhibitors of Macrophage Migration Inhibitory Factor. ACS Medicinal Chemistry Letters 2017, 8: 1287-1291. PMID: 29259749, PMCID: PMC5733268, DOI: 10.1021/acsmedchemlett.7b00384.Peer-Reviewed Original ResearchHydrogen bondsFEP resultsProtein-ligand hydrogen bondsExcellent aqueous solubilityLactam carbonyl groupDFT calculationsAqueous solubilityAmmonium groupsCarbonyl groupN distancesActive siteCrystal structureBondsQuinoline inhibitorsRelated quinolinesQuinolineNaphthyridinonesModel systemSolubilityCompoundsComplexesLys32CoordinationNMCalculations
2016
Elucidating the Origin of Long Residence Time Binding for Inhibitors of the Metalloprotease Thermolysin
Cramer J, Krimmer S, Fridh V, Wulsdorf T, Karlsson R, Heine A, Klebe G. Elucidating the Origin of Long Residence Time Binding for Inhibitors of the Metalloprotease Thermolysin. ACS Chemical Biology 2016, 12: 225-233. PMID: 27959500, DOI: 10.1021/acschembio.6b00979.Peer-Reviewed Original ResearchConceptsCharge-assisted hydrogen bondsMetalloprotease thermolysinSurface plasmon resonance spectroscopyDrug discoveryHigh-resolution crystal structuresPlasmon resonance spectroscopyKinetic dataProtein-ligand interactionsStructure-kinetic relationshipsRational drug discoveryHigh conservationHydrogen bondsDissociation rate constantsStrength of interactionThermolysin inhibitorsMetalloprotease familyCrystal structureMolecular mechanismsSide chainsStrand motifResonance spectroscopyStructural motifsRate constantsRate-limiting stepLigand releaseActive Site Mapping of an Aspartic Protease by Multiple Fragment Crystal Structures: Versatile Warheads To Address a Catalytic Dyad
Radeva N, Schiebel J, Wang X, Krimmer S, Fu K, Stieler M, Ehrmann F, Metz A, Rickmeyer T, Betz M, Winquist J, Park A, Huschmann F, Weiss M, Mueller U, Heine A, Klebe G. Active Site Mapping of an Aspartic Protease by Multiple Fragment Crystal Structures: Versatile Warheads To Address a Catalytic Dyad. Journal Of Medicinal Chemistry 2016, 59: 9743-9759. PMID: 27726357, DOI: 10.1021/acs.jmedchem.6b01195.Peer-Reviewed Original ResearchConceptsFunctional groupsAspartic protease endothiapepsinCatalytic dyadCarboxylic acid fragmentOxygen functional groupsNovel functional groupsActive site mappingSteric demandWater moleculesFragment-growing strategyCrystal structureSide chainsFragment libraryHigh-quality crystalsS1 pocketScreening cascadeAcid fragmentCrystallographySpecificity pocketRelated fragmentsWarheadImpact of Surface Water Layers on Protein–Ligand Binding: How Well Are Experimental Data Reproduced by Molecular Dynamics Simulations in a Thermolysin Test Case?
Betz M, Wulsdorf T, Krimmer S, Klebe G. Impact of Surface Water Layers on Protein–Ligand Binding: How Well Are Experimental Data Reproduced by Molecular Dynamics Simulations in a Thermolysin Test Case? Journal Of Chemical Information And Modeling 2016, 56: 223-233. PMID: 26691064, DOI: 10.1021/acs.jcim.5b00621.Peer-Reviewed Original ResearchConceptsObserved structure-activity relationshipsLocal water structureProtein-ligand bindingMolecular dynamics simulationsStructure-activity relationshipsHigh-resolution crystal structuresSolvation sitesWater structureSurface water networkWater rearrangementCrystal structureDesolvation effectsDifference electronMolecular dynamicsDynamics simulationsLigand portionWater networkDrug bindingContribution of waterWater layerComplexesSurface water layerWaterPhosphonamidatesStructure
2014
Methyl, Ethyl, Propyl, Butyl: Futile But Not for Water, as the Correlation of Structure and Thermodynamic Signature Shows in a Congeneric Series of Thermolysin Inhibitors
Krimmer S, Betz M, Heine A, Klebe G. Methyl, Ethyl, Propyl, Butyl: Futile But Not for Water, as the Correlation of Structure and Thermodynamic Signature Shows in a Congeneric Series of Thermolysin Inhibitors. ChemMedChem 2014, 9: 833-846. PMID: 24623396, DOI: 10.1002/cmdc.201400013.Peer-Reviewed Original ResearchConceptsWater moleculesFirst solvation layerThermodynamic binding profilesProtein-ligand binding processHigh-resolution crystal structuresIsothermal titration calorimetrySolvation patternsCorrelation of structureSolvation layerEntropy-driven bindingThermolysin inhibitorsCongeneric seriesSingle methyl groupCrystal structureWater arrangementSolvent-exposed surfaceTitration calorimetryBinding processMethyl groupS2 pocketSubstituentsComplex formationBinding propertiesLigand binding propertiesBiological systems